
Middle-East Journal of Scientific Research 19 (7): 908-912, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.19.7.1469

Corresponding Author: D. Kerana Hanirex, Department of CSE Bharath University, Chennai-73, India.

908

An Adaptive Language Approach for Domain Analysis

D. Kerana Hanirex

Department of CSE,
Bharath University, Chennai-73, India

Abstract: Domain-specific languages (DSLs) are computer languages intended for problem solving in a specific
domain. Ontology is a formal representation of a set of concepts from a particular domain and the relations
between them. The proposed system aims at developing a system which provides multi programming paradigm
as currently most of the programming languages are providing only single programming paradigm. So mostly
software developers need to mix and match different paradigms, typically lead to impedance mismatch. The
proposed system is developed using integration of ontology paradigm in a programming language which is
already having multiple programming techniques like functional, object oriented, concurrency. The basic
approach used in integration is metaprogramming, which will craft and a process of languages for creating,
modifying, adapting, adjusting and otherwise transforming other program.

Key words: Domain-Specific Language Domain analysis Ontology

INTRODUCTION been developed. Examples of such methodologies include:

Programming languages are used for human- FODA (Feature-Oriented Domain Analysis) and ODM
computer interaction. Programming language can be (Organization Domain Modeling). Formal methodologies
divided into general-purpose languages (GPLs) and are not used due to complexity and the domain analysis
domain-specific languages (DSLs). GPLs, such as Java, C is done informally. Even if the domain analysis is done
and C#, are designed to solve problems from any problem with a formal methodology, there are not any clear
area. When developing new software, a decision must be guidelines on how the output from domain analysis can
made as to which type of programming language will be be used in a language design process. The outputs of
used: GPL or DSL. Reasons for using a DSL are as domain analysis consist of domain-specific terminology,
follows: easier programming, re-use of semantics and the concepts, commonalities and variabilities. Variabilities
easier verification and programmability for end-users. would have been entries in the design of DSL, while
However, using a DSL also has its disadvantages, such terminology and concepts should be reflected in the DSL
as high development costs. The key is to answer the constructs and commonalities could be incorporated into
question of when to develop a DSL,the simplest answer the DSL execution environment. Although it is known
to this question is: a DSL should be developed whenever where the outputs of the domain analysis should be used,
it is necessary to solve a problem that belongs to a there is a need for clear instructions on how to make good
problem family and when we expect that in the future more use of the information, which are retrieved during the
problems from the same problem family will appear. DSL analysis phase, in the design stage of the DSL.
development consists of the following phases: decision, we propose that domain analysis (classic domain
analysis, design, implementation, testing, deployment and analysis (CDA)) that can be performed with the use of
maintenance. existing techniques from other fields of computer

While the implementation phase has attracted a lot science. A particularly suitable one is the use of
of researchers, some of the DSL development phases are ontologies. An ontology provides the vocabulary of a
less known and are not as closely examined (e.g. analysis, specialized domain. This vocabulary represents the
design). Various methodologies for domain analysis have domain objects, concepts and other entities. Ontologies

DSSA (Domain Specific Software Architectures),

Middle-East J. Sci. Res., 19 (7): 908-912, 2014

909

in the CDA have already been used. We propose that an originating in the domain ontology and the other
ontology replace the CDA. They also investigated how dimension represents the functional concerns that
ontologies contribute to the design of the language. originate from user requirements. For the development
Ontologies in connection with DSL are also used by other of ontological based domain model one has to determine
authors. The proposed solution of the first problem, the the domain, choose an ontology for the domain, address
use of ontologies, has a significant effect on the second specific user requirements and finally has to construct the
problem, related to CDA. application model by configuring the objects that

Software can be developed for a variety of purposes, originate from ontological categories with aspects that
the three most common being to meet specific needs of a originate from specific user requirements. The selected
specific client/business ie the case with custom software, ontology should contain the minimal set of concepts that
to meet a perceived need of some set of potential users ie completely covers the domain.
the the case with commercial and open source software, Over the past few years, people who surf the World
or for personal use for example a scientist may write Wide Web (WWW)got quite used to possibility to reuse
software to automate a mundane task. Software content from other sites within the website they are
environments are designed with a single programming currently browsing. This allows Web users to manage
paradigm, such as ontologies, functions, objects, or their photos, contacts, or personal diaries in dedicated
concurrency. So the solutions developed using this type websites specialized for these media types. However,
of software environments will limit the representation and how these different websites exchange data contradicts
efficiency. So mixing and matching languages, platforms the design principles of the WWW in various ways,
and paradigms is the typical technique used to improve ranging from a lack of standardized protocols to
the solution. Cross-mapping multiple paradigms and bypassing important features of the Web architecture:
platforms will produce an impedance mismatch that Web applications often maintain a state where they
increases a solution’s complexity. should not, often do not support content negotiation, or

The term ontology has become popular in several even work against caching mechanisms, e.g., by
fields of Informatics like Artificial Intelligence, Agent modifying resources on HTTP GET requests. In contrast,
systems, Database or Web Technology. The term the linked-data community builds upon Semantic-Web
ontology in Computer Sciences ontology stands for a standards like resource description framework (RDF) and
formal explicit specification of a shared conceptualization SPARQL protocol and RDF query language (SPARQL) to
or it can also be defined aso the subject of existence or as achieve a Web of Data that is completely based on
an description of the concepts and relationships that can standards and capable of even more advanced
exist for an agent or a community of agents. interactions between independent Web-based information

Ontologies for the Software Engineering domain is systems. Unfortunately, it turned out that the creation of
applicable to software development project which is not actual software processing linked data is not trivial and
just concerned with a specific application.One principal requires the software developer to understand quite some
goal of ontology in software engineering domain is to of the Web standards that are involved. While such
extend the idea of reuse from the implementation to the knowledge can be expected from members of the
modelling level. I.e. instead of building systems from Semantic-Web and linked-data communities, it should not
ready-made components which are "plugged together" be required for the average software engineer writing
like hardware modules, ontologies are reusable model software for the WWW.
components from which particular implementations can be DSL development with the presented framework is
derived for specific platforms, according to specific easier and thus cheaper because the framework is able to
interfaces and constraints of application development execute a large part of the transformation independently
projects. One of the most common tasks in software of the DSL engineer. The involvement of the engineer is
design is to create an object model of the software required in the steps where the framework has to
application. In designing domain specific Software, the “understand” the meanings of the concepts for which the
designer has option of using knowledge about the work is being done. Another advantage of the framework
domain, in addition to user requirements and principles is the ability to quickly test and verify different solutions;
design. The method leads to a specific architecture of developing different grammars. Of course, the framework
the software component with models in two orthogonal does require some knowledge before it can be effectively
dimensions. One dimension represents the categories used. Familiarization with ontologies ensures a much

Middle-East J. Sci. Res., 19 (7): 908-912, 2014

910

easier understanding of the framework, the developed A mechanism to bridge both metamodelling and
framework is appropriate for use in education as well as
industry. Students will find it particularly useful when
they study the construction of grammars, as the
framework autonomously accomplishes several steps and
leads them to the correct path. Industrial use would be the
primary goal, as it would be leveraged to speed up the
process of DSL development as well as lowering the
costs. Ontologies have been used by other authors in the
DSL field]. A survey of literature has not given any
reference where research was aimed at the
development of DSLs from ontologies. Also, our
framework cannot be compared to various tools for
 DSL creation (e.g., EMFText, Xtext, MetaEdit+, GME),
where DSL is created from a language model (meta-model).
All these tools require that domain concepts and
relationships among them are already known. Hence,
these tools do not support a domain analysis phase,
which is usually done adhoc.

Previous Research: Many domain-specific languages,
that try to bring feasible alternatives for existing solutions
while simplifying programming work, have been stared in
[1]. In this work, we present an experiment, which was
carried out to compare such a domain-specific language
with a comparable application library. The experiment was
conducted with 10 programmers, who have answered a
questionnaire on both implementation approaches. The
questionnaire is more than 100 pages long. For a domain-
specific language and the application library, the same
problem domain has been used-construction of graphical
user interfaces. In terms of a domain-specific language,
XAML has been used and C# Forms for the application
library. A cognitive dimension framework has been used
for a comparison between XAML and C# Forms.

The requirement for Rational framework for
metaprogramming as consistent programming and
metaprogramming languages, familiar metaprogramming
construct, familiar code, Compile-time objects as first-
class citizens, Closed form is proposed in [2].
Metaprogramming manipulates symbols representing
various complex operations rather than plain data
elements. A more powerful type of metaprogramming
involves extending existing languages or creating new
ones. Everyday metaprogramming involves on-the-fly
code production. A language that is build with
metaprogramming feature should have capability to
manipulate functions in the same way as that of data.

Modeling spaces is proposed in [3] which will help
software practitioner to understand modeling.

ontologies in order to identify ways in which they can be
made compatible and linked in such a way as to benefit
both communities and create a contribution to a coherent
underpinning theory for software engineering is
dicussed in [4].

Semantic Web will enable machines to comprehend
semantic documents and data is described in [5]. Shared
understanding is achieved by exchanging ontologies. The
Semantic Web will bring structure to the meaningful
content of Web pages, creating an environment where
software agents roaming from page to page can readily
carry out sophisticated tasks for users. The Semantic
Web is not a separate Web but an extension of the
current one, in which information is given well-defined
meaning, better enabling computers and people to work in
cooperation [6].

Hypotheses: For developing the DSLs of the following are
the hypotheses,

Decision
Analysis
Design
Implementation
Deployment

MATERIALS AND METHODS

DSL development is not a simple sequential process
of (positive) decision followed by domain analysis,
followed by DSL design and so on [7].

Hypotheses Testing

DECISION

The decision phase corresponds to the “when”-
part of DSL development. Deciding in favor of a new
DSL is usually not easy. The investment in DSL
development (including deployment) has to pay for
itself by more economical software development
and/or maintenance later on. In practice, short-term
considerations and lack of expertise may easily cause
indefinite postponement of the decision. To aid in the
decision process, we identify a number of decision
patterns. These are common situations that potential
developers find themselves in that might motivate the use
of DSLs [8].

Middle-East J. Sci. Res., 19 (7): 908-912, 2014

911

Analysis: In the analysis phase of DSL development, the Therefore, the new language has all the power of the
problem domain is identified and domain knowledge is
gathered. This requires input from domain experts and/or
the availability of documents or code from which domain
knowledge can be obtained. Most of the time, domain
analysis is done informally, but sometimes domain
analysis methodologies such as DARE (Domain Analysis
and Reuse Environment), DSSA (Domain-Specific
Software Architectures), FODA (Feature-Oriented Domain
Analysis), or ODM (Organization Domain Modeling) are
used [9-13].

Design: Approaches to DSL design can be characterised
along two orthogonal dimensions: the relationship
between the DSL and existing languages and the formal
nature of the design description.

The easiest way to design a DSL is to base it on an
existing language. We identify three patterns of design
based on an existing language. First, we can piggyback
domain-specific features on part of an existing language.
A related approach restricts the existing language to
provide a specialisation targeted at the problem domain.
Both of these approaches are often used where a notation
is already widely known.

Once the relationship to existing languages has been
determined, a DSL designer must turn to specifying the
design before implementation. We distinguish between
informal and formal designs. In an informal design the
specification is usually in some form of natural language
probably including a set of illustrative DSL programs [14-
18].

Implementation: When an (executable) DSL is designed,
the most suitable implementation approach should be
chosen. The implementation patterns we have identified.
First, it should be noted that interpretation and
compilation are as relevant for DSLs as for GPLs, even
though the special character of DSLs often makes them
amenable to other, more efficient, implementation
methods, such as preprocessing and embedding.
Development cost is not directly related to implementation
method, however, especially if a language development
system or toolkit is used to generate the implementation.
DSL compilers are often called application generators. An
alternative to the traditional approach to the
implementation of DSLs is by embedding. In the
embedding approach, a DSL is implemented by extending
an existing GPL (the host language) by defining specific
abstract data types and operators. A problem in a domain
then can be described with these new constructs [19].

host language, but an application engineer can become a
programmer without learning too much of it.

The Results of Hypotheses Testing: In this section of
paper we present analysis the results of research
hypotheses. Evaluation of the developed system is done
with the following features against three programming
languages/framework. The features are compatibility with
java and dotnet, lightweight, concurrency with stm and
ontology. Compatibility with java and dotnet is defined as
the capability of existing and performing operation with
java and dotnet. A lightweight programming language is
one that is designed to have very small memory footprint,
is easy to implement and/or has minimal syntax and
features.

CONCLUSION

DSLs will never be a solution to all software
engineering problems, but their application is currently
limited by a lack of reliable knowledge available to
DSL developers. To help remedy this situation, we
distinguished five phases of DSL development and
identified patterns in each phase, except deployment.
Multiparadigm programming feature is accomplished by
using homogeneous metaprogramming on a single
platform/language. Thus it become an alternative of
adding new platform to the environment as the embedding
ontologies through a homogeneous DSL in a host
language to support the features of the ontology
paradigm. Complexities of multiplatform development
are avoided [20-22].

REFERENCES

1. Kosar, T., N. Oliveira, M. Mernik, V.J.M. Pereira,
M.C. repins¡ek, C.D. Da and and R.P. Henriques,
2010. Comparing general-purpose and domainspecific
languages: An empirical study, Comp. Sci. Inf. Syst.,
7(2): 247-264.

2. Spinellis, D., 2008. Rational Metaprogramming, IEEE
Softw., 25(1): 78-79.

3. Djuric, D., D. Gasevic and V. Devedzic, 2006.
The Tao of modeling spaces, J. Object Technol.,
5(8): 125-147.

4. Henderson-Sellers, B., 2011. Bridging metamodels
and ontologies in software engineering, Int. J. Sys.,
Sof., 84: 301-313.

Middle-East J. Sci. Res., 19 (7): 908-912, 2014

912

5. Berners-Lee, T., J. Hendler and O. Lassila, 2001. 15. Sprinkle, M. Mernik, J.P. Tolvanen and D. Spinellis,
The semantic web, Sci.Amer., 284(5): 28-37. 2009. What kinds of nails need a domain-specific

6. Mernik, M., D. Hrncic, B.R. Bryant and F. Javed, hammer, IEEE Softw., 26(4): 15-18.
2011. Applications of grammatical inference in 16. Kumaravel, B. Anatha Barathi, 2013. Personalized
software engineering: domain specific language image search using query expansion, Middle-East
development. In: Martin-Vide, C. (ed.): Scientific Journal of Scientific Research, ISSN: 1990-9233,
applications of language methods 2, Imperial College 15(12): 1736-1739.
Press, London, pp: 421-457. 17. Kumaravel, A. and R. Udayakumar, 2013. Web Portal

7. Ceh, I., M. Crepinšek, T. Kosar and M. Mernik, 2011. Visits Patterns Predicted by Intuitionistic Fuzzy
Ontology Driven Development of Domain- Specific Approach, Indian Journal of Science and
Languages. Computer Science and Information Technology, ISSN: 0974-6846, 6(5S): 4549-4553.
Systems, 8(2): 317-342. 18. Kumaravel, A. and K. Rangarajan, 2013. Algorithm for

8. Kosar, T., P.E. Martinez Lopez, P.A. Barrientos and Automation Specification for Exploring Dynamic
M. Mernik, 2008. A preliminary study on various Labyrinths, Indian Journal of Science and
implementation approaches of domain-specific Technology, ISSN: 0974-6846, 6(5S): 4554-4559.
language. Information and Software Technology 5, 19. Kumaravel, A. and Oinam Nickson Meetei, 2013.
50(5): 390-405. An Application of Non-uniform Cellular Automata

9. Studer, R., R. Benjamins and D. Fensel, 1998. for Efficient Crytography, India n Journal of
Knowledge engineering: Principles and methods”. Science and Technology, ISSN: 0974-6846,
Data & Knowledge engineering, 25(1): 168-198. 6(5S): 4560-4566.

10. Staab, S. and R. Studer, 2009. Handbook on 20. Pattanayak, Monalisa. and P.L. Nayak, 2013. Green
Ontologies. Springer Verlag. Synthesis of Gold Nanoparticles Using Elettaria

11. Lacy, L.W. and O.W.L., 2005. Representing cardamomum (ELAICHI) Aqueous Extract World
Information Using the Web Ontology Language. Journal of Nano Science & Technology, 2(1): 01-05.
Trafford Publishing. 21. Chahataray, Rajashree. and P.L. Nayak, 2013.

12. Hebeler, J., M. Fisher, R. Blace and Perez-Lopez, 2009. Synthesis and Characterization of Conducting
A.: Semantic Web Programming. Wiley Publishing. Polymers Multi Walled Carbon Nanotube-Chitosan

13. Tairas, R., M. Mernik and J. Gray, 2009. Using Composites Coupled with Poly (P-Aminophenol)
Ontologies in the Domain Analysis of Domain- World Journal of Nano Science & Technology,
Specific Languages. In: Models in Software 2(1): 18-25.
Engineering. LNCS, Springer, 5421: 332-342. 22. Parida, Umesh Kumar, S.K. Biswal, P.L. Nayak and

14. Aho, A.I., M.S. Lam, R. Sethi and J.D. Ullman, 2007. B.K. Bindhani, 2013. Gold Nano Particles for
Compilers: Principles, Techniques and Tools. Biomedical Applications World Journal of Nano
Addison Wesley. Science & Technology, 2(1): 47-57.

