
Middle-East Journal of Scientific Research 19 (6): 817-820, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.19.6.1475

Corresponding Author: B. Anantha Barathi, Department of Cse Bharath University, India.
817

Structured Information Extraction System from Web Pages

B. Anantha Barathi

Department of CSE,
Bharath University, India

Abstract: The World Wide Web is a vast and rapidly growing source of information. Most of this information
is in the form of unstructured text, making information hard to query. Many websites that have large collections
of pages containing structured data. For example, Amazon lay out the author, title, comments, etc. in the same
way in all its book pages. The values used to generate the pages (e.g. the author, title,..) typically come from
a database. In this paper, we study the problem of automatically extracting the database values from template
generated web pages without learning examples or other similar human input. We formally define a template and
propose a model that describes how values are encoded into pages using a template. We present an algorithm
that takes, as input, a set of template-generated pages, deduces the unknown template used to generate the
pages and extracts, as output, the values encoded in the pages. Experimental evaluation on a large number of
real input page collections indicates that our algorithm correctly extracts data in most cases.

Key words: Information Extraction Wrapper EXALG

INTRODUCTION

Many web sites contain large sets of pages
generated using a common template or layout. For
example, Amazon [1] lays out the author, title, comments,
etc. in the same way in all its book pages. The values used
to generate the pages (e.g. the author, title,...) typically
come from a database. In this paper, we study the problem
of automatically extracting the database values from such
template generated web pages without any learning
examples or other similar human input.

This paper studies the problem of automatically
extracting structured data [2] encoded in a given
collection of pages, without any human input like
manually generated rules or training sets. For instance,
from a collection of pages like those in Figure 1 we would
like to extract book tuples, where each tuple consists of
the title, the set of authors, the (optional) list-price and
other attributes (Figure 2). Extracting structured data from
the web pages is clearly very useful, since it enables us to
pose complex queries over the data. Extracting structured
data has also been recognized as an important
sub-problem in information integration systems [3-5],
which integrate the data present in different web-sites Fig. 1: Two book pages from Amazon

Middle-East J. Sci. Res., 19 (6): 817-820, 2014

818

Page A B C …
1 MySystem . . . Aron . . . (NULL) …
2 Godel, . . . Douglas . . . 20.00 …
. ….. …. ….. …
. ….. …. ….. …
Fig. 2: Extracted Data

Therefore, there has been a lot of recent research in
the database and AI communities on the problem of
extracting data from web pages (sometimes called
information extraction (IE) problem).

An important characteristic of pages belonging to the
same site and encoding data of the same schema, is that
the data encoding is done in a consistent manner across
all the pages. For example, in both the pages of Figure 1,
the title of the book appears in the beginning followed by
the word “by,” followed by the a uthor (s). In other
words, the above pages are generated using a common
“template” by “plugging-in” values for the title, list of
authors and so on. Most of the information extraction
techniques proposed so far and the technique that we
propose in this paper, exploit the template based encoding
for extracting data from the pages. Specifically, the
techniques use either a partial or complete knowledge of
the template used to generate the pages, to extract the
data. For example, in Figure 1, the price of a book can be
extracted by retrieving the text immediately following the
template-text “OurPrice.”

The primary difference between various information
extraction techniques lies in how the knowledge of the
template is acquired by the extraction system. The earliest
information extraction techniques rely on a human to
encode knowledge of the template into a program called
wrapper, which then extracts data. In Hammer et al. [8] a
human expresses some part of the template as declarative
rules and a “wrapper generator” converts these rules into
a wrapper. More recent systems like XWRAP [6], WIEN
[7], STALKER [8] and SOFTMEALY [9] use human
generated training examples that identify data in a small
number of pages, to learn knowledge of the template.

We know of only two previous work on automatic
extraction, namely, Kumaravel etal14] ROADRUNNER [10]
and IEPAD [11]. There are fundamental differences, both
in problem formulation and solution approach, between
our work and the above two. Both ROADRUNNER and
IEPAD make the simplifying assumption that an HTML
tag is always part of the template of the page. Although,
statistically, HTML tags do tend to occur in template,
there are a significant number of cases where they occur
within data.

We make two clarifications regarding our
assumptions and goals. First, our goal is not to try to
semantically name the extracted data. We assume that
renaming, for example, attribute A in Figure 2 as “TITLE”,
is done as a post processing step, possibly with human
help. Second, we assume that our input pages conform to
a common schema and template. We do not consider the
problem of automatically obtaining such pages from web
sites. It is reasonably easy for a human to identify web
collections of interest that have a common schema and
then run a crawler to gather the pages.

EXALG: In this paper, Kumaravel etal [12] we present an
algorithm, EXALG to solve the EXTRACT problem.
Figure 3 shows the different sub-modules of EXALG.
Broadly, EXALG works in two stages.

In the first stage (ECGM), it discovers sets of tokens
associated with the same type constructor in the
(unknown) template used to create the input pages.

In the second stage (Analysis), it uses the above sets
to deduce the template. The deduced template is then
used to extract the values encoded in the pages.

This section outlines the execution of EXALG for our
running example. In the first stage, EXALG (within Sub-
module FINDEQ) computes “equivalence classes” — sets
of tokens having the same frequency of occurrence in
every page in Pe. An example of an equivalence class (call
Ee1) is the set of 8 tokens {<html>, <body>, Book,...,
</html>}, where each token occurs exactly once in every
input page. There are 8 other equivalence classes. EXALG
retains only the equivalence classes that are large and
whose tokens occur in a large number of input pages. We
call such equivalence classes LFEQs (for Large and
Frequently occurring EQuivalence classes). For the
running example there are two LFEQs. The first is Ee1

Fig. 3: Modules of EXALG

Middle-East J. Sci. Res., 19 (6): 817-820, 2014

819

Fig. 4: Template

shown above. The second, which we call Ee3, consists of A2: A large number of tokens is associated with each
the 5 tokens: {, Reviewer, Rating, Text, }. type constructor. Further, each type constructor is
Each token of Ee3 occurs once in pe1, twice in pe2 and so instantiated a large number of times in the input pages.
on. The basic intuition behind LFEQs is that it is very This assumption is ensures that the equivalence class
unlikely for LFEQs to be formed by “chance”. Almost derived from a type constructor is recognized as an LFEQ.
always, LFEQs are formed by tokens associated with the
same type constructor in the (unknown) template used to A3: There is no “regularity” in encoded data that leads to
create the input pages. This intuition is easily verified for the formation of invalid equivalence classes.
the running example where all tokens of Ee1 (resp. Ee3)
are associated with ôe1 (resp. ôe3) of Se in Te2. For this A4: There are “separators” around data values. In our
simple example, Sub-module HANDINV does not play any model, this translates to the assumption that the strings
role, but for real pages HANDINV detects and removes associated with type constructors are non-empty. As we
“invalid” LFEQs — those that are not formed by tokens indicated in Section 1 this assumption is made in some
associated with a type constructor. related in most information extraction tasks.

EXALG enters the second stage when it cannot grow
LFEQs, or find new ones. In this stage, it builds an output CONCLUSION
template TS’using the LFEQs constructed in the previous
stage. In order to construct S’, EXALG first considers the This paper presented an algorithm, Kumaraveletal
root LFEQ — the LFEQ whose tokens occur exactly once [14] EXALG, for extracting structured data from a
in every input page. collection of web pages generated from a common

Assumptions: Kumaravel et al [13] EXALG makes several that generated the pages and uses the discovered
assumptions regarding the unknown template and values template to extract the data from the input pages [15-17].
used to generate its input pages. We summarize the EXALG uses two novel concepts, equivalence
important assumptions: classes and differentiating roles, to discover the template.

A1: A large number of tokens occurring in template have drawn from many well-known data rich sites, indicate that
unique roles, to bootstrap the formation of equivalence EXALG is extremely good in extracting the data from the
classes and subsequent differentiation. web pages. Another desirable feature of EXALG is that it

template. EXALG first discovers the unknown template

Our experiments on several collections of web pages,

Middle-East J. Sci. Res., 19 (6): 817-820, 2014

820

does not completely fail to extract any data even when 11. Chang, C. and S. Lui, 2001. IEPAD: Information
some of the assumptions made by EXALG are not met by extraction based on pattern discovery. In Proc. of
the input collection. In other words the impact of the 2001 Intl. World Wide Web Conf., pp: 681-688.
failed assumptions is limited to a few attributes [18-20]. 12. Kumaravel, A. and K. Rangarajan, 2013. Algorithm

REFERENCES Labyrinths, Indian Journal of Science and

1. Amazon.com. http://www.amazon.com. 13. Kumaravel, A. and R. Udayakumar, 2013. Web Portal
2. Abiteboul, S., R. Hull and V. Vianu, 1995. Visits Patterns Predicted by Intuitionistic Fuzzy

Foundations of Databases. Addison Wesley, Approach, Indian Journal of Science and
Reading, Massachussetts. Technology, ISSN: 0974-6846, 6(5S): 4549-4553.

3. Garcia-Molina, H., Y. Papakonstantinou, D. Quass, A. 14. Kumaravel, A. and Oinam Nickson Meetei, 2013. An
Rajaraman, Y. Sagiv, J.D. Ullman and J. Widom, 1996. Application of Non-uniform Cellular Automata for
The TSIMMIS project: Integration of heterogenous Efficient Crytography, Indian Journal of Science and
information sources. Journal of Intelligent Technology, ISSN: 0974-6846, 6(5S): 4560-4566.
Information Systems, 8(2): 116-132. 15. Brin, S., 1998. Extracting patterns and relations from

4. Levy, A., A. Rajaraman and J.J. Ordille, 1996. the world wide web. In WebDB Workshop at 6th Intl.
Querying heterogeneous information sources using Conf. on Extending Database Technology.
source descriptions. In Proc. of the 1996 Intl. Conf. 16. Hammer, J., H. Garcia-Molina, J. Cho, A. Crespo and
on Very Large Data Bases, pp: 251-262. R. Aranha, 1996. Extracting semi structure information

5. Haas, L., M.D. Kossmann, E.L. Wimmers and J. Yang, from the web. In Proceedings of the Workshop on
1996. Optimizing queries across diverse data sources. Management of Semistructured Data.
In Proc. Of the 1996 Intl. Conf. on Very Large Data 17. Kumaravel, B. Anatha Barathi, 2013. Personalized
Bases, pp: 266-285. image search using query expansion, Middle-East

6. Liu, L., C. Pu and W. Han, 2000. XWRAP: An XML- Journal of Scientific Research, ISSN: 1990-9233,
enabled wrapper construction system for web 15(12): 1736-1739.
information sources. In Proc. of the 2000 Intl. Conf. 18. Pattanayak, Monalisa and P.L. Nayak, 2013. Green
on Data Engineering, pp: 611-621. Synthesis of Gold Nanoparticles Using Elettaria

7. Kushmerick, N., D. Weld and R. Doorenbos, 1996. cardamomum (ELAICHI) Aqueous Extract World
Wrapper induction for information extraction. In Journal of Nano Science and Technology, 2(1): 01-05.
Proc. of the 1996 Intl. Joint Conf. on Artificial 19. Chahataray, Rajashree. and P.L. Nayak, 2013.
Intelligence, pp: 629-636. Synthesis and Characterization of Conducting

8. Muslea, I., S. Minton and C.A. Knoblock, 1999. Polymers Multi Walled Carbon Nanotube-Chitosan
A hierarchical approach to wrapper induction. In Composites Coupled with Poly (P-Aminophenol)
Proc. of Third Intl. Conf. on Autonomous Agents, World Journal of Nano Science and Technology,
pp: 190-196. 2(1): 18-25.

9. Hsu, C.N. and M.T. Dung, 1998. Generating finite- 20. Parida, Umesh Kumar, S.K. Biswal, P.L. Nayak and
state transducers for semi-structured data extraction B.K. Bindhani, 2013. Gold Nano Particles for
from the web. Information Systems Special Issue on Biomedical Applications World Journal of Nano
Semistructured Data, 23(8): 521-538. Science and Technology, 2(1): 47-57.

10. Crescenzi, V., G. Mecca and P. Merialdo, 2001.
ROADRUNNER: Towards automatic data extraction
from large web sites. In Proc. of the 2001 Intl. Conf.
on Very Large Data Bases, pp: 109-118.

for Automation Specification for Exploring Dynamic

Technology, ISSN: 0974-6846, 6(5S): 4554-4559.

