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The Kumaraswamy-Generalized Lomax Distribution

Tarek M. Shams

Department of Statistics,
Faculty of Commerce, Al-Azhar University, Cairo, Egypt.

Abstract: The modeling and analysis of lifetimes is an important aspect of statistical work in a wide variety of
scientific and technological fields. For the first time the Kum-GL distribution is introduced and studied. The new
distribution can have a decreasing and upside-down bathtub failure rate function depending on the value of
its parameters; it is including some special sub-model like Pareto Type I Distribution and its original form. Some
structural properties of the proposed distribution are studied including explicit expressions for the moments.
We provide the density function of the order statistics and obtain their moments. The method of maximum
likelihood is used for estimating the model parameters and the observed information matrix is derived. A set of
real data is provided to illustrate the theoretical results in the complete sampling case.

Key words: Hazard  function   Kumaraswamy  distribution   Moment   Maximum likelihood estimation
 Lomax distribution.

INTRODUCTION Where:  is the scale parameter and  is the shape

For life testing when the life times of items are In this context and based on the Kumaraswamy
continuous random variables, it is important to know the distribution  [1].  We  propose  an  extension  of   the
total number of individuals in the sample which is drawn Lomax  distribution  based  on  the family of
from an assumed failure model, the total number of Kumaraswamy generalized  (denoted  with  the  prefix
individuals may be unknown for many causes, either due “Kw-G”  for  short)  distributions  introduced by
to the omission in the records or perhaps because of Cordeiro and de Castro [2]. Nadarajah et al. [3] studied
physical conditions of the experiment and then the sample some mathematical properties of this family. The
size should be estimated. The Lomax distribution (Pareto Kumaraswamy (Kw) distribution is not very common
distribution of the second kind) has, in recent years, among statisticians and has been little explored in the
assumed apposition of importance in the field of life literature. Its cdf (for 0 < x < 1) is , where a
testing because of its uses to fit business failure data. The
cumulative distribution function cdf of the parameters
Lomax distribution is: 

(1)

A random variable x is said to follow the Lomax
distribution, if the probability density function pdf of x is
as follows:

(2)

parameter.

> 0 and b > 0 are shape parameters and the density
function has a simple form , which

can be unimodal, increasing, decreasing or constant,
depending on the parameter values. It does not seem to
be very familiar to statisticians and has not been
investigated systematically in much detail before, nor has
its relative interchangeability with the beta distribution
been widely appreciated. However, in a  very  recent
paper, Jones [1] explored  the  background  and  genesis
of this distribution and, more importantly, made clear
some similarities and differences between the beta and Kw
distributions.
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In this note, we combine the works of Kumaraswamy (5)
[4] and Shawky et al. [5], to derive some mathematical
properties of a new model, called the Kumaraswamy
Generalized exponentiated Pareto (Kw-GEP) distribution, where  are non-negative shape
which stems from the following  general  construction: if
G denotes the baseline cumulative function of a random
variable, then a generalized class of distributions can be
defined by:

(3)

Where: a > 0 and b > 0 are two additional shape
parameters which govern skewness and tail weights.
Because of its tractable distribution function (2), the Kw-G
distribution can be used quite effectively even if the data
are censored. Correspondingly, its density function is
distributions has a very simple form

(4)

The density family (3) has many of the same
properties of the class of beta-G distributions [6], but has
some advantages in terms of tractability, since it does not
involve any special function such as the beta function.
Equivalently, as occurs with the beta-G family of
distributions, special Kw-G distributions can be generated
as follows: the Kw-normal distribution is obtained by
taking G(x) in (2) to be the normal cumulative function.
Analogously, the Kw-Weibull [7], Kw-generalized gamma
[8], Kw-Birnbaum-Saunders [9] and Kw-Gumbel [2]
distributions are obtained by taking G(x) to be the cdf of
the Weibull, generalized gamma, Birnbaum-Saunders and
Gumbel distributions, respectively, among several others.
Hence, each new Kw-G distribution can be generated from
a specified G distribution.

This paper is outlined as follows. In section 2, we
define the KW-GL distribution and provide expansions for
its cumulative and density functions. A range of
mathematical properties of this distribution is considered
in sections 3 and 4. These include quantile function,
simulation, skewness and kurtosis. Maximum likelihood
estimation is performed and the observed information
matrix is determined in section 5. In section 6, we provide
simulation study for the generated data. Finally, some
conclusions are addressed.

The  Kumaraswamy-Generalized  Lomax  Distribution:
If  is the Lomax cumulative distribution with
Paramete  then equation (1) yields the Kw-GL
cumulative distribution for (x 0)

Parameter and  is the scale parameter. The corresponding
pdf and Hazard Rate Function are: 

(6)
and

,

 respectively

Special Distributions: The following well-known and new
distributions are special sub-models of the Kum-GP
distribution.

Exponentiated Lomax Distribution: If b = 1, the Kum-GL
distribution reduces to

Which is the exponentiated Lomax distribution (EL),
for a= b =1, we obtain the Lomax distribution. 

Expansions for the Cumulative and Density Functions:
Here, we give simple expansions for the Kw-GL
cumulative distribution. By using the generalized binomial
theorem (for 0 < a < 1)

In equation (5), we can write
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Which follows (6), i.e. 

Where  and  denotes the EL cumulative

distribution with parameters , Now, using the
power series (7) in the last term of (6), we obtain 

We can write

(8)

Where  and , denotes the

Exponentiated Lomax Distribution with parameters
 Thus, the Kw-GL density function can be

expressed as an infinite linear combination of Lomax
densities. Thus, some of its mathematical properties can
be obtained directly from those properties of the Lomax
distribution. For example, the ordinary, inverse and
factorial moments, moment generating function (mgf) and
characteristic function of the Kw-GL distribution follow
immediately from those quantities of the Lomax
distribution.

Quantile Function and Simulation: We present a method
for simulating from the Kw-GL distribution (6). The
quantile function corresponding to (5) is:

(9)

Simulating the Kw-GL random variable is straight
forward. Let U be a uniform variate on the unit interval
(0,1). Thus, by means of the inverse transformation
method, we consider the random variable X given by

Skewness and Kurtosis: The shortcomings of the
classical kurtosis measure are well-known. There are many
heavy tailed distributions for which this measure is
infinite. So, it becomes uninformative precisely when it
needs to be.  Indeed, our motivation to use quantile-based
measures stemmed from the non-existence of classical
kurtosis for many of the Kw distributions. The Bowley’s
skewness [10] is based on quartiles:

And the Moors’ kurtosis [11] is based on octiles:

Where Q(.) represents the quantile function

Estimation and Information Matrix: In this section, we
discuss maximum likelihood estimation and inference for
the Kw-GL distribution. Let  be a random
sample from  where  be the

vector of the model Parameters, the log-likelihood
function for  reduces to

(10)

The score vector ,

where the components corresponding to the parameters
in  are given by differentiating (10). By setting
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and

The maximum likelihood estimates (MLEs) of the
parameters  are  the solutions of the nonlinear equations
l = 0, which are solved iteratively. The observed

information matrix given

Whose elements are:
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and



 b  

   

 

 
 

2
1 1

4 3

1 2 22
2

4

1 2
1

1 1 1

a ai i
i i i i

ai i i
i

x x
Q x z z

x x x
a z



 



 


 

 
 

   


      

               

   

 

AIC 2 2q   BIC 2 qlog(n)

2qn
[CAIC 2 ]

n q 1

 



   

 
 

 


 



 


Middle-East J. Sci. Res., 17 (5): 641-646, 2013

645

Table 1: MLEs of the model parameters, the corresponding SEs (given in
parentheses) and the statistics AIC, BIC and CAIC
Estimates Statistic
------------------------------------ --------------------------------------

Model AIC BIC CAIC

Kw-GL 11.529 4.368 3.713 5.64 163.616 161.762 163.012
EL 9.875 --- 3.981 3.87 197.554 192.18 197.60
L -- -- 4.414 3.456 205.132 267.106 205.850

Where:

Application: Here, we use a real data set to compare the
fits of the Kum-GL distribution and those of other sub-
models, i.e. the Exponentiated Lomax (EL) and Lomax
distributions. We make a results comparison of the
models fit. We consider an uncensored data set
corresponding an uncensored data set from consisting of
100 observations on breaking stress of carbon fibers (in
Gba): 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42,
2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43,
2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2,
3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55,
2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36,
0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73,
1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18,3.51, 2.17,
1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7,
2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05,
3.65. These data are used here only for illustrative
purposes. The required numerical evaluations are carried
out using the Package of Mathcad software.

Tables 1 provide the MLEs of the model parameters.
The model selection is carried out using the AIC (Akaike
information criterion), the BIC (Bayesian information
criterion) and the CAIC (consistent Akaike information
criteria):

Where denotes the log-likelihood function evaluated

at the maximum likelihood estimates, q is the number of
parameters and n is the sample size.

Since the values of the AIC, BIC and CAIC are
smaller for the Kum-GP distribution compared with those
values of the other models, the new distribution seems to
be a very competitive model to these data.

Concluding Remarks: The well-known two-parameter
Lomax distribution, introduced by Abd-Elfattah et al. [12],
is extended by introducing two extra shape parameters,
thus defining the KW-G exponentiated Pareto (KW-GL)
distribution having a broader class of hazard rate and
density functions. This is achieved by taking (1) as the
baseline cumulative distribution of the generalized class
of  KW-G  distributions  defined  by  Cordeiro  et al. [7].
A detailed study on the mathematical properties of the
new distribution is presented. The new model includes as
special sub-models the Pareto, exponentiated Pareto (EP)
[13] and Pareto distributions. We obtain the quantile
function, skewness and kurtosis. The estimation of the
model  parameters  is  approached  by  maximum
likelihood and  the observed information matrix is
obtained. An application to a real data set indicates that
the fit of the new model is superior to the fits of its
principal sub-models. We hope that the proposed model
may be  interesting for a wider range of statistical
research.
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