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Abstract: A crucial characteristic of realistic water resources management systems is flow variation over time.
Also, in many real applications flows, there are some relations, such as equality, among the amounts of flow
on some subsets of arcs over time. In this paper, we consider the problem of water resources management on
generalized networks where delay values associated with each arc, limited storage of the intermediate nodes
and arc capacity variations over time are taken into account. In additional, we assume that the arcs flows for
some subset of arcs are linearly dependent on a reference arc over time. For such systems, we first formulate
continuous-time and discrete-time models. Then, by using an auxiliary time-expanded network, a solvable model
is introduced, which is equivalent to the main model. Finally, a numerical example is used to illustrate the
applicability of the approach. We also discuss how adding storage capability at intermediate nodes reduces
the overall cost of the optimal solution.

Key words: Water supply systems % Network optimisation % Generalized network flow % Time-expanded
network

INTRODUCTION values to represent water input and output in the system

A regional water supply system can be included capacity or functional constraints can be associated with
several components, such as water sources, demand each arc in each period. In other hand, in the standard
centres  and   transfer   and   storage    commodities. MCN for the water supply system analysis, the main
Water resource management problems can be formulated constraints are only the flow conservatives for each node.
using network models. The supply nodes represent That is, the amount of flow on any arc that leaves its tail
surface water storage, ground water storage and rainfalls node equals the amount of flow that arrives at its head
capacity nodes. The demand nodes describe the node. However in the practical applications, this
evaporation and irrigation, urban and industrial. The arcs conservation assumption is violated with gain/loss flow
correspond  to  rivers,  channels,  pipes,  ditches and on arc. In such cases, a basic generalized network flow
inter-basin transfers. An example of the design case is model is considered, in which a positive multiplier, µ , is
illustrated in the simple system shown in Fig. 1, which has associated to each arc (i, j), so that each unit of the flow
two reservoirs and demands. In order to obtain a leaving node i is changed by µ  unit when it reaches node
preliminary assessment for resource allocation within the j. Moreover, MCN structure is lost when side constraints
water supply system, we can use minimum cost flow are added to the problem. One group of such important
(MCF) algorithms and obtain overall optimization cost. side constraints are relations between some arcs flow in
There are several works in literature which deal with MCF network. First ALi. et al. [5] studied the so called equal
algorithms to water supply optimisation problems [1-3]. flow problem in which given pairs of arcs are required to

In general terms, the water supply system analysis have identical flow. For this problem, they developed an
must be extended to a dynamic multi-period network to algorithm, which uses relaxation and decomposition
support the functionality of the system components with techniques. An integer version of the equal flow problem
a finite time horizon [4]. Each node in the multi-period (where arc flows must be integer) studied by Ali et al. is
network can be associated with positive or negative the  NP-complete  problem. Ahuja et al. [6] introduced the

respectively. Flow transfer cost and bounds representing

ij

ij
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Fig. 1: An example of the simple system shown 

so called simple equal flow problem in which one subset reality, flows are delayed while transmitted along each arc
of  arcs  is  required to carry the same amount of flow. and the output flows do not leave a node at the same time
This model is an extension of Ali’s model to a subset of that flows are arriving at the same node. Needless to say,
arcs, instead of some certain pairs; and for this problem, such assumptions affect the overall performance analysis
they propose two different algorithmic approaches. As an of a given network. Another realistic characteristic of
extension of Ahuja’s model, Calvete [7] considered a more realistic networks is their variation over time. In fact,
extended version of the equal flow problem in his model important characteristics of real-world networks such as
in which there are several subsets of arcs requiring the arc costs and capacities are often subject to fluctuations
flow of arcs in some given sets of arcs to take on the same over time.
value. He developed a simplex primal algorithm that The  rest   of   this   paper  is  organized  as  follows.
exploits the network structure of the problem and requires In Section 2, the system model for the water supply
only slight modifications of the network simplex algorithm. system is presented. Section 3 extends the problem to the
Salehifathabadi and Raayatpanah [8] argued that the discrete-time network model. Simulation results are
problem of simple linear flow relations in minimum cost presented in Section 4. Finally, Section 5 concludes the
network flow has been solved for only standard network paper.
flows.

In this paper, we consider a dynamic multi-period Problem Definition and Modelling: The multi-period
water supply system with a time horizon on generalized water supply system is represented by a  directed  graph
networks, where the flow values on some arcs are linearly G = (V, A, D), where V is the set of nodes, |V| = n, A is the
dependent on the flow value on some other reference set of directed arcs, |V| = m and D is the integer time
arcs. In addition, the effect of limited storage in horizon over which network behavior at the destination is
intermediate nodes is taken into account. However, in observed.  The  time  horizon  D  is  chosen   such  that all
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source flow units have arrived at the destination by the Consequently, for p=D we have the equality:
end of this period. Each directed arc e,A is associated
with four integer parameters: transit time d , transit cost c ,e    e

a positive multiplier µ , that denotes gain/loss flow on arce

e and a positive integer capacity at time p denoted by
u (p). As d  denotes the transit time over arc e, if x (p) is where e   e         e

the rate of flow entering arc e at time p, the flow x (p)e

arrives at tail (e) at time p+d . Throughout the paper, wee

assume that transit time of packets over each arc is an
integer value.  The   integer  restriction  on  the  delay
does impose some  loss  of  generality  because  the
integer delay solution might not be as accurate as a Assume that Rd A is a specified set of arcs in which
solution   based   on   continuous  delay  values. the amount of flow on its arcs linearly depends on the
However, we can obtain an integer solution as close as amount of flow on the arc (p,q) in the set p,[0, D] in each
desired to an optimal continuous solution by scaling the period, this arc is called the reference arc, i.e., 
time  axis  properly (i.e., by multiplying all time indexes
such as d  by an integer value M to obtain a highere

accuracy value of Md , for a proper choice of M, for eache

arc e). where  "    and   a   are  constants  related   to   each   arc
Each node i,N is associated with a number b''(i) e  =  (i,j) in the set R. It is assumed "  Ö 0. The simple

representing its supply/demand. If b''(i)>0, node i is a equal flow problem is considered as a special case in a
supply node; if b''(i)<0, node i is a demand node; and if period, when the flow on arcs are equal i.e., "  = 1 and 8
b''(i) = 0, node i is a transshipment node. Let SN, DN and = 0, ú(i, j) , A.
MN be sets of source, demand, intermediate nodes, Therefore, the generalized minimum cost flow with
respectively. simple linear flow relations can be formulated as follows:

For the arc e = (i,j) we write head(e) := j and tail(e) :=
i. For a node i , V, the terms  and  denote the set of (2)
arcs leaving node i (tail(e) = i) and entering node i (head(e)
= i), respectively.

The linear, separable cost c  denotes the cost of s,t (3)e

sending unit flow x (p) over arc e , A. Therefore, the totale

cost is given by . The capacity u (p) ise

an upper bound on the rate of flows entering arc e at time
p: 

u (p) $ x (p)e   e

It should be noted that the conservation constraints
for the case of arcs with delay will be included by
integration of the  classical  flow  conservation
constraints over time. As storage of flow at intermediate
nodes is allowed  in  our  model,  the  flow  entering  a
node can be stored at that node for a given time before it
is sent out. Assuming b  denotes amount of storage fori

i,MN, p,[0, D], storing constraints at each node can be
written as follows:

(1)

ij      ij

ij

ij    ij

(4)

(5)

(6)

(7)

(8)

We will present a corresponding discrete-time
network model G for the problem.

Discrete-Time Formulation: In the continuous time
model, p can take any value in [0, D]. However, in discrete
time  models,  network is observed only at time instances
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p = 0, 1, 2,, D. By considering the same network
parameters as before, our model in discrete time can be
formulated as follows:

still hold. Let 2 , {0,1,2,...,D–1}, then for each i,N, we get:
(9)

s.t

(10)

(11)

(12)

(13) and for 2=D, the above equation will be satisfied as an

(14) get:

where for the discrete-time  version  of  G,  the  rate  of
flow  sent  into  arc  e  during the interval [p, p+1],

denoted by , is equal to  for

each p,{0, 1, 2,, D}. In addition, the discrete-time capacity
 is defined as follows:

In order to simplify the problem, the usual approach
for deriving practical algorithms for a continuous-time
coded network problem is to reduce it to a discrete time
one. As mentioned earlier, the approximation error can be
reduced by choosing a smaller discrete time step at the
cost of additional complexity.

Lemma 1: By transforming the continuous variables into
their corresponding discrete variables (as given above),
the corresponding discrete time model in (3) is obtained
that satisfy the corresponding constraints.

Proof: Suppose x (p) satisfy the constraints in model (2)e

for the arc capacities u (p), e , A, p , [0, D]. For everye

integral time step p , {0,1,2,...,D–1} and time horizon D,
 can be bounded as follows:

It is easy to verify that flow conservation constraints

equality. Therefore, regarding the objective function we

Conversely, let  satisfy the constraints in model

(3) for the arc capacities . We define  and

capacity  for . It is obvious that x (p)e

satisfy the constraints in model (2) for the arc capacities
u (p). Pe

In summary, the above Lemma shows that every
continuous-time problem can be transformed to a
corresponding discrete-time one.

It should be noted that the model given in (3)
although is a discrete time model, is still not a static model
to be solved in polynomial time. Hence, our proposed
algorithm is based on reduction of this problem to a static
time-expanded problem that can be solved in polynomial
time with respect to the time-expanded network.

Time-Expanded Network:  We  now  present  a  method
for solving model (3). In order to solve the above
formulated problem, we propose an approach based on
the time-expanded network proposed. In this paper, our
goal is to obtain  the  optimal  solution  by  considering
the discrete time model in which delay times will take
integer  values and all are bounded in the time horizon D.
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The time-expanded version of network G is a digraph GD

= (V , A ), wherein there is a copy of the nodes for eachD  D

time step in the time horizon {0,1,,D}. The formal
definitions are as follows:

Note that for a network G , |V | = D|V| and:D  D

Since the maximum amount of storage at node v is
denoted by b , at each time instant at most b  units ofv        v

information can be stored in that node. Consequently, in
the equivalent time-expanded network, the same amount
of information is transformed from v  to v . Therefore,p  p+1

the capacity of the arc connecting nodes v  and v  in thep  p+1

time-expanded network will be equal to b .v

Consequently, finding an optimal sub-graph in a
network with delays can be solved by finding a sub-graph
optimal in the time-expanded graph.

(15)

s.t

(16)

(17)

(18)

(19)

where  and  indicate the rate of flow on arc

 and arc capacities, respectively. It is easy

to verify that models (3) and (3.1) will be equivalent by
setting  for each

.

Simulation Results: In this section, the computational
results of simulations undertaken are presented in order
to evaluate the performance of the proposed technique.
we assess the proposed method on random networks.
Firstly, we describe how to generate the random test
instances of the problem and then the computational
experiments  and   associated   results   are  presented.
The random directed graphs were generated using to the
methodology proposed by Erdos and Renyi [9]. In this
case, it was assumed that there is a arc from node i to
node j with probability 0.5. Then, for each arc, a uniform
random number was generated on an interval, say [a, b],
in order to represent the arc cost. In experiments
conducted in this case, we selected [a, b] equal to [1, 2].
The capacity of each arc and storage of each node in the
network is one unit. Moreover, arc delays were assigned
randomly and the source and demand nodes were
randomly chosen as well.

Considering network variations, the simulations are
performed for the following three scenarios as well. In the
first case, no arc delay and storage were assumed. In fact,
the system was considered in a period. In the second
case, storage and arc costs was included, however
assumed that their values do not change over time. In the
third case, arc costs were assumed to be constant but
storage vary over time (randomly chosen from a uniform
distribution in the interval three to ten). In second and
third cases, time horizon was changed to evaluate of
performance system over time. The results are shown in
Table I. The results shown that (i) For small values of time
horizon, sending data through low-delay paths may lead
to higher cost results. In addition, if time horizons are
assigned to very small values, it is possible to encounter
scenarios in which finding an optimal sub-graph is
impossible. (ii) By increasing the time horizon, the
proposed algorithm has more flexibility in choosing lower
cost solutions. (iii) Increasing the storage of nodes can
reduce the overall cost, as intermediate nodes have the
flexibility to store incoming packets in their storage when
their lower-cost output arcs are occupied. Such nodes can
then send out the stored packet at a later time instant at
which the given lower-cost arcs become available again.
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Table 1: Overall network cost for the cases 1, 2 and 3

First case Second case Third case
------------------------------- ---------------------------------- -----------------------------------------------------------

Original network size D=1 D=4 D=6 D=8 D=4 D=6 D=8

12 nodes 35 arcs 37.67 79.107 169.515 237.321 94.9284 135.612 379.7136
20 nodes 90 arcs 64.86 181.608 243.225 369.702 163.4472 340.515 480.6126
28 nodes 138 arcs 96.25 269.5 409.0625 529.375 377.3 449.9688 487.025
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