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Abstract: In this paper the fourth order singularly perturbed boundary value problem is solved using septic
spline. The given method is proved to be fourth order convergent. To illustrate the efficiency of the method
two examples are considered. The method is also compared with the existing method and it is evident that the
method is better than the existing one.
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INTRODUCTION number  of  articles  have  been  appearing on non-

Perturbation theory is a well-known and important such as [7-11]. Only few researchers have developed
theory  in   these   days.   For   two  basic  reasons higher order singularly perturbed problems such as [10,
singular   perturbed    problems    have   gained 12-14]. A survey article by Patidar and Kadalbajoo [15] is
importance.  Firstly,  they  appear  in many areas of considerable in this respect.
science  and   engineering,   for   instance  fluid The solution of singularly perturbed boundary value
mechanics, combustion, nuclear engineering, elasticity, problems is described by slowly and rapidly varying
quantum  mechanics,  chemical  reactor theory, parts. So there are thin transition layers where the
convention-diffusion     process,     control   theory,  etc. solution can jump suddenly, while away from the layers
A few good examples are the modelling of steady and the solution varies slowly and behaves regularly. Ghazala
unsteady viscous flow problems with  large  Reynolds [16] solved the third order singularly perturbed boundary
number, WKB Theory, boundary layer problems and value problem using quartic spline and the method is
convective-heat transport problems with large Peclet proved to be second order convergent.
number. Ghazala and Nadia [17] solved the fourth order

Secondly, the   formation   of   sharp   boundary singularly perturbed boundary value problem using
layers  in   numerical   methods  when ,  the  coefficient quintic spline and the method is proved to be second
of  highest  derivative, approaches to zero creates order convergent.
problem.  Both  the   analytical   and   numerical handling There are three standard approaches to solve
of  these  problems is becoming interesting for singularly perturbed boundary value problems
researchers. Since, in general, the classical numerical numerically, the finite difference method [14, 18, 19], the
methods  fail   to  produce  good  approximations  for finite element method [20] and spline approximation
these  equations.  Hence  one  has  to   search  for the methods [9, 10, 11]. In the present paper the third
non-classical methods. For analytical discussion on technique, i.e., spline approximation method has been
singular perturbation problems, one can refer to, used to solve singularly perturbed self adjoint boundary
Kevorkian and Cole [1], Bender  and  Orsazag [2], Mally value problem arising in the study of chemical reactor
[3], Nayfeh [4, 5], Van Dyke [6]. From last 20 years a  large theory, of the form:

classical methods, with mostly second order equations
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(1.1)

or

(1.2)

where , i=0, 1, 2,…, 5 are finite real constants and , is a small positive parameter (0 < 1). Further functions f(x) andi

p(x) are smooth functions and p(x) = p = constant. It is known that the most classical methods fail when  is small relative
to the mesh width h. Our target is to develop a method to give accurate numerical approximation of (1.1) when  is either
small or large as compared to h.

This    paper    is    organized    in   five   sections.    In    Section    2,    the     consistency    relations  in terms of
values   of    spline    and    its    six    derivatives    at    knots    are    determined    using   derivatives  continuities  at
knots.   Consistent    end    conditions     are     determined      in      Section      3.      In    Section  4, it is proved that the
septic spline solution for the fourth order singularly perturbed  differential  equation is of O(h ). In Section 5, two4

examples are considered to show the accuracy of the method developed.

Septic Spline and its Consistency Relations: To develop the consistency relations the following seventh degree spline
is considered:

(2.1)

defined on [a, b], where x  [x , x ] with equally spaced knots, x  = a + ih, i = 0,1, 2,…N,i i+1 i

h = (b-a)/N and S(x) C [a, b].6

To determine the eight coefficients introduced in Eq.  (2.1),  the  eight  conditions  are required. These conditions
can  be  defined  in  many  ways  such as in terms of second, fourth and sixth derivatives at both ends of each
subinterval.
Let

The coefficients determined are as follows:
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From the continuity of the first, third and fifth derivative at the point x = x the following relations are derivedi

(2.2)

(2.3)

(2.4)
which leads to the following consistency relation in terms of M and ui i

(2.5)

Using Eq. (1.1), the Eq. (2.5) can be written as

(2.6)

End Conditions: Since the system (2.6) consists of (N - 5) equations in (N -1) unknowns, so four more equations are
required, as the end conditions. Consider the end conditions for the system (1.1), in the following form

(3.1)
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where all the coefficients as, i = 0, 1,… 6, bs; i = 0,1,…,5 and c  are to be determined using the method of undeterminedi i 0

coefficients. The value of coefficients for k = 0 can be calculated, as

Substituting the values of a s, b s for m = 0,1,…,6, n = 0,1,…,5  and   c    in  Eq.  (3.1)  the  required  end conditionm n 0

for i = 1 is determined, as

(3.2)

Again, using the Taylor's series for the Eq. (3.1), the values of coefficients for k = 1 can be calculated, as

Substituting the values of a s, b s for m = 1, 2,…,7, n = 1,2,…,6 and  c  in  Eq.  (3.1)  the  required  end condition form n 0

i = 2 is determined, as

(3.3)

Similarly, the end condition for i = N - 2 is:
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(3.4)

and for i = N - 1, the end condition is:

(3.5)

The end conditions for the solution of the system (1.2) can be calculated in the same manner and are given as follows:
for i = 1

(3.6)

for i = 2

(3.7)

for i = N -2

(3.8)
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and for i = N – 1

(3.9)

Convergence of the Method: The system of Eqns. (3.2), (3.3), (2.6), (3.4) and (3.5), provides the required solution of BVP
(1.1) which can be written in matrix form, as

(4.1)

(4.2)

Also,
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Let be the exact solution of BVP (1.1) and U be the approximate solution then Eq.
(4.1) can be rewritten as,

(4.3)

(4.4)

From Eq. (4.1) and Eq. (4.3), it follows that:

(4.5)
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(4.6)
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x x x x x x

x x x x ) x x x x

 x x x x x

u

− + = − − − − −

+ − + − +

+ − − − − +

+ − + − +
(1) (1)0) 0, (1) 0, (0) 0, (1) 0. u  u  u= = = =
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(4.7)

Also, from the theory of matrices it can be written as

(4.8)

(4.9)

where

(4.10)

From Eq. (4.7), it can be written as

(4.11)

Using Eq. (4.4) in Eq. (4.11) the following result is obtained,

(4.12)

(4.13)

Similarly, the method developed for the system of Eqns. (3.6), (3.7), (2.6), (3.8) and (3.9), preserves fourth order
convergence. The results can be summarized in the following theorems

Theorem 4.1: The method given by system (3.2), (3.3), (2.6), (3.4) and (3.5) for solving the boundary value problem (1.1)
for sufficiently small h gives a fourth order convergent solution.

Theorem 4.2: The method given by system (3.6), (3.7), (2.6), (3.8) and (3.9) for solving the boundary value problem (1.2)
for sufficiently small h gives a fourth order convergent solution.

Numerical Results
Example1: For x [0, 1], consider the differential system:

The exact solution of the above system is,



4 8( ) (1 ) sin( ).u x  x x x= −

(4) 4 4 2 3 4

(2) (2)

( ) ( ) (( 1) 24 (5 60 210 280 126 )),

with ( 1) 16 , (1) 0, ( 1) 688 , (1) 0.

u x pu x x x x x x x x

u  u  u  u

− + = − − − + − +

− = − = − = − =

5 4( ) (1 ) .u x  x x= −
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Table 1: The results developed by the method
h=1/16 h=1/32 h=1/64 h=1/128

1/16 1.666 e-006 1.31 e-007 2.614 e-009 6.716 e-011
1/32 8.537 e-007 6.736 e-008 1.344 e-009 3.452 e-011
1/64 4.520 e-007 3.569 e-008 7.128 e-010 1.829 e-011
1/128 2.60 e-007 2.049 e-008 4.092 e-010 1.05 e-011

Table 2: The results developed by Ghazala and Nadia [17]
h=1/16 h=1/32 h=1/64 h=1/128

1/16 1.315 e-006 1.617 e-007 2.853 e-008 6.682 e-009
1/32 6.703 e-007 8.170 e-008 1.434 e-008 3.355 e-009
1/64 3.489 e-007 4.177 e-008 7.249 e-009 1.692 e-009
1/128 1.915 e-007 2.201 e-008 3.717 e-009 8.619 e-010

Table 3: The results developed by the method
h=1/10 h=1/20 h=1/40 h=1/80

1/16 8.6 e-003 1.506 e-004 2.951 e-006 8.053 e-008
1/32 2.5 e-003 4.772 e-005 9.202 e-007 2.246 e-008
1/64 1.7 e-003 3.397 e-005 6.468 e-007 1.425 e-008
1/128 8.653 e-004 1.792 e-005 3.387 e-007 7.199 e-009

Table 4: The results developed by Ghazala and Nadia [17]
h=1/10 h=1/20 h=1/40 h=1/80

1/16 1.191 e-001 3.18 e-002 8.1 e-003 2.0 e-003
1/32 2.88 e-002 7.7 e-003 2.0 e-003 4.950 e-004
1/64 1.47 e-002 4.0 e-003 1.0 e-003 2.595 e-004
1/128 7.2 e-003 1.9 e-003 4.929 e-004 1.239 e-004

The observed maximum errors associated with us for Example 1, corresponding to different values of are tabulatedi

in Table 1. The absolute errors determined, using method developed by Ghazala and Nadia in [17] are shown in Table
2, which shows that the method presented in this paper is better than Ghazala and Nadia [17]. It is also confirmed from
the Table 1 that if h is reduced by factor 1/2, then E  is reduced by a factor 1/16, which indicates that the present method
gives fourth order results.

Example 2: For x [-1, 1], consider the following boundary value problem:

The exact solution of the above system is,

The observed maximum errors associated with u s for CONCLUSIONi

Example 2, corresponding to different values of are
tabulated in Table 3. The absolute errors determined, In this paper fourth order singularly perturbed
using method developed by Ghazala and Nadia in [17] are boundary  value   problem   is  solved  using  septic
shown in Table 4, which shows that the method presented spline, which is computationally effective. The method
in this paper is better than Ghazala and Nadia [17]. It is has been examined for convergence and proved that the
also confirmed from the Table 3 that if h is reduced by order of convergence is O(h ). Two examples are
factor 1/2, then E  is reduced by a factor 1/16, which presented which support the order of convergence.
indicates that the present method gives fourth order Comparison with the existing method shows that the
results. present method is better.

4
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