
Middle-East Journal of Scientific Research 14 (4): 570-579, 2013
ISSN 1990-9233
© IDOSI Publications, 2013
DOI: 10.5829/idosi.mejsr.2013.14.4.488

Corresponding Author: Muhammad Irfan, Department of Statistics, Government College University, Faisalabad, Pakistan.
570

Comparison of Shrinkage Regression Methods for
Remedy of Multicollinearity Problem
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Abstract: Biased regression methods provide better results as compared to the ordinary least squares (OLS)
when the predictors are highly collinear. In the current study, we compared Partial Least Squares Regression
(PLSR) with other prediction methods: Ordinary Least Squares (OLS), Ridge Regression (RR) and Principal
Component Regression (PCR) to handle the problem of multicollinearity on Gross Domestic Product (GDP) data
of Pakistan. All prediction methods have also been compared for efficiency through Root Mean Square Error
(RMSE), Root Mean Square Error cross Validation (RMSECV), Cross Validation Parameter (CVP) and R-Square.
Overall, it is found in our study that Partial Least Squares Regression (PLSR) provides better prediction as
compared to the other prediction methods.
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INTRODUCTION are  very  frequently  especially  on  time   series  data.

Multicollinearity refers to the situation where there is as under:
either an exact or approximately exact linear relationship Yeniay and Goktas [6] compared three regularized
among the explanatory variables Gujarati [1]. In multiple regression methods by RMSE and RMSECV on real data.
regressions BLUE property is no longer effective in the The data consists of the gross domestic product per
existence of multicollinearity. When multicollinearity is capita (GDPPC) in Turkey. Ordinary least squares
present in a set of predictors, the ordinary least squares regression (OLS) and Ridge regression (RR) were found
(OLS) estimates of the individual regression coefficients to be best because the value of RMSE is minimum while
tend to be unstable i,e. “t- ratios” of one or more Partial least squares regression (PLSR) is best because
coefficients tend to be statistically insignificant Chatterjee RMSECV is minimum. Finally, they concluded in their
and Hadi [2] because of its large variance’s and study Partial least squares regression (PLSR) was the
covariance’s which means the estimates of the parameters superior model in terms of the prediction ability as
tend to be less precise Adnan et al. [3] and can guide to compared to the other regularized models.
wrong inferences. Therefore, the more the multicollinearity Adnan et al. [3] compared prediction methods Ridge
the less interpretable are the parameters. In such Regression (RR), Principal Component Regression (PCR)
circumstances, three alternative estimation shrinkage or and Partial Least Squares Regression (PLSR) using Monte
biased or prediction regression methods: Ridge Carlo simulation study taking predictors 2, 4, 6 and 50 and
Regression (RR), Principal Component Regression (PCR) sample size 20, 30, 40, 60, 80 and 100. All simulations and
and Partial Least Squares Regression (PLSR) can be used calculations were done using statistical package S-Plus
to take more informative results of the data than the 2000 software. Authors concluded in their study on the
ordinary least squares (OLS) method. Although, all three basis of the simulation study the Ridge  regression  (RR)
shrinkage regression models are biased (with smaller is  found  to  be  best  for low number of regressors
variances) but tend to have more precision as measured (When sample size lie between 20 to 100), Principal
by Mean Square Error (See Hoerl & Kennard [4] and Component Regression (PCR) is best when number of
Draper & Smith [5]). The use of all three shrinkage models observations are greater than number of regressors in the
to alleviate the problem of multicollinearity  on  real data model and Partial Least Squares Regression (PLSR)

Brief reviews of findings of some earlier research work are
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perform better results as compared to the other two Methodology: In this section three prediction methods:
prediction methods when we have a large number of Ridge Regression (RR), Principal Component Regression
regressors. (PCR) and Partial Least Squares Regression (PLSR) are

Maitra and Yan [7] presented two techniques: PCA described briefly which are used in our study to remove
and PLSR for dimension reduction purpose when the problem of multicollinearity.
regressors are highly correlated. PCA technique is used
without the consideration of the correlation while PLSR Ridge Regression (RR): The standardize regression
technique is applied based on the correlation using model can be written as
simulated data. They concluded that PLSR technique is
more effective to the PCA technique for dimension Y =  + Z  + (2.1)
reduction purpose.

Ahmad and Gilani [8] compared OLS, RR, PCR and where Y is the n×1 vector of “n” observations, Z is the
PLSR to handle the problem of multicollinearity. Root n×P matrix of “n” observations on P regressors,  is the
Mean Square Error (RMSE), Root Mean Square Error P×1 vector of regression coefficients, is the n×1 vector
cross Validation (RMSECV), Cross Validation Parameter of random errors with zero mean & variance I.
(CVP) and R-Square techniques are used to compare the Ordinary least squares estimators obtained by
efficiency of all prediction methods. The authors used 34 minimizing the sum of squared residuals as:
district values for taking infant mortality rate as response
variable in Punjab over 1000 live births on six predictor (2.2)
variables in Pakistan. They analyzed their results using
UNSCRAMBLER software. They suggest that PLSR is the Z  Z is ill- conditioned and the variances of the estimators
best model to tackle the problem of multicollinearity is in Equation (2.2) becomes large Maitra and Yan [7];
among three prediction methods. Kramer [9] discussed the multicollinearity will be appear in the data sets in this
shrinkage properties of PLSR. situation because   predictors   are    highly   correlated.

Ahmad et al. [10] used only Ridge regression (RR) To overcome the problem of multicollinearity, Hoerl [12]
method instead of other prediction techniques to remove developed a new methodology which is known as Ridge
the  problem  of  multicollinearity  while  ridge  trace  and regression (RR). Hoerl and Kennard [13] proposed ridge
L-curve methods are used to find out the appropriate regression estimators by a parameter “k 0”, in the
value of ridge constant to develop a suitable ridge standardize form
regression method.

Aldrin [11] described that the biased regression (2.3)
methods on the ordinary least square regression on noisy
data when the multicollinearity exists in the explanatory Thus, the ridge estimate
variables. A new biased method was proposed that
modified the ordinary least square estimate by adjusting (2.4)
each  element   of   the   estimated   coefficient   vector.
The adjusting factors are founded by minimizing the Where I is the P×P identity matrix, Z  Z is the correlation
prediction error. Ridge Regression is used as the principal matrix of regressors and Ridge constant (“k”) always lies
method to find the preliminary estimate called length between 0 and 1. When k = 0,  &  estimators
modified ridge regression. In addition, the length modified are identical. Ridge estimators are referred to as shrinkage
principal component regression method is considered, estimator because of ridge regression tend to shrink the
after that the results of this method is compared with the estimate of the regression coefficients toward zero
ridge regression, principal component regression and Chatterjee and Hadi [2]. There are many  procedures in
partial least square methods. Length modified method is the literature for the choice of the ridge constant (“k”).
more suitable for the prediction as compare to the other These methods include: Fixed point, Iterative method and
methods. ridge trace.

The rest   of  the  article  is  prepared  as  follows.
The second section reviews the methodology and data; Fixed Point: Hoerl et al. [14] proposed fixed point method
the third section presents the observed results and to search out the best value of ridge constant. It is
discussion; and the fourth section concludes the study. defined as:
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scree plot (the suitable number of PC’s where the bend
(2.5)

Where  are the least squares estimators
because ridge constant is zero and  is the
standardize residual mean square.

Iterative Method: Hoerl and Kennard [4] offered iterative
point method to find out the best value of ridge constant.
Start with the value of k which has already been
calculated by fixed point method then determine as:

(2.6)

Then, (2.6) to compute k  as:2

(2.7)

When the difference of estimates is moderately small then
stop the iterative procedure.

Ridge Trace: In Ridge regression to find the best value of
the ridge constant is determined graphically by ridge trace
plot. Ridge trace is a plot of the regression coefficients i,e.

 against the ridge constant i,e. “k” which stars from
the value of 0 and ending with 1. “k” is selected when all
the coefficients of the estimates are stable Chatterjee and
Hadi [2] and Ahmad et al. [10].

Principal Component Regression (PCR): Another
method to remove the problem of multicollinearity among
the predictors is principal component regression. PCR was
developed by Massy in 1965. In PCR analysis, original
variables are transformed into new orthogonal variables
using Jordan decomposition of a matrix (known as
principal components i,e. PC’s). These new variables
(PC’s) are independent to each other Ahmad and Gilani
[8].

The procedure of finding PCR according to Yeniay &
Goktas [6] and Chatterjee & Hadi [2] runs a regression
using the appropriate principal components as the
regressors  with   the  response  variable  under  study.
We can search out the appropriate number of PC’s
through Eigen values of the correlation matrix (i,e. select
those PC’s whose Eigen value is greater than one) and

changes significantly). The regression model can be
written in terms of standardize variables as:

(2.8)

Assuming predictors are in standard form, “G”
represents the orthogonal matrix. GG  =I Because “G” isT

orthogonal and Z  = XGm

The model in (2.1) may describe in the form as:

Y =  + XGG  + (2.9)0
T

The model in (2.9) can be written in terms of principal
components as:

Y =  + Z  + (2.10)o m m

Where  and “m” is the number of
PC’s retained in the model.
Thus, the Principal component estimate

(2.11)

where “G” is the Eigen vector of first “m” coefficients for
principal components.  &  estimators are

identical if all the PC’s are used in the model instead of
using first m PC’s.

Partial Least Squares Regression (PLRS): PCA
technique is used without the consideration of the
correlation while PLSR technique is applied based on the
correlation. Partial least squares regression (PLSR) is an
alternative powerful approach rather than other Ridge
regression (RR) and Principal component regression
(PCA) techniques; it was originally developed by Swedish
Statistician Herman Wold in 1966 (Father of PLS
methodology) and Svante Wold (Son of Herman Wold)
developed Partial least squares regression (PLSR) which
is commonly used inchemo metric (Norgaard et al. [15]),
chemical engineering (Matria & Yan [7]), Pharmacology
(Lobaugh et al. [16]) and so many other fields where
predictors consist of many different observations. PLSR
is especially useful when regressors are highly correlated
(i,e. colinearity exist; Car rascal et al. [17] even for the
more than the number of observations Yeniay & Goktas
[6]. Several statistical packages are available to perform
PLSR which are: XL-STAT, SAS, SPSS 20 version, S-Plus
2000, MATLAB, Minitab 16 version and
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UNSCRAMBLER. Partial least squares regression (PLSR)
technique attempts to find a linear decomposition of X
and Y such that

X = PM  + A,      Y = QN  + BT T

where P  and Q  are the matrices of X & Y scoresn×r n×r

respectively, M  & N  are matrices of the X & Yp×r 1×r

loadings and P  and Q  are the X & Y residuals.p×r p×r

(2.12)

Sufficient literature is available on Partial least
squares regression (PLSR) with its properties for example;
Wold [18]), Adnan et al. [3], Yeniay & Goktas [6], Matria
& Yan [7] and Ahmad & Gilani [8] etc.

Model fitting by all Prediction Methods: In this section,
we will compare OLS, RR, PCR and PLSR on a real data.
The study includes annual time series data of thirty nine
years for the period of 1973 to 2011. The sample included
total 39 observations consist of the Gross domestic
product (real) and several variables affecting GDP in
Pakistan (Table   1.    for    variable   description). We
estimated our results using STATA version 12 for
(transformation purpose), XLSTAT for (Partial least
squares  regression)   and   NCCS  version  2008  for
(Ridge Regression and Principal Component Regression)
software’s. First of all, normality is checked through
different transformations using the statistical package
STATA version 12. Logarithm transformation Irfan et al.

Table 1: Description of the variables

Variables Description

Y (Response variable) GDP: Gross domestic product (real)

X  (Predictor) FDI: Foreign direct investment1

X (Predictor) ER: Exchange rate2

X (Predictor) INF: Inflation rate3

X (Predictor) INVGDP: Investment to GDP ratio4

Sources: Pakistan Economic survey various issues 

International Financial statistics

Hand book of statistics on Pakistan economy

[19] is much better than the other  transformations
(Figures of the variables are not displayed). In Table 2.
Regression coefficients have been calculated by the help
of ordinary least squares (OLS) method and their other
related information especially for diagnosing of
multicollinearity using NCSS version 2008. Both the
tolerance and VIF columns, three predictors (FDI, ER and
INVGDP) are highly correlated which is the indication of
multicollinearity and the INF variable is  non  collinear.
The  overall regression model is highly significant at
99.5% while the individual “t” statistic for INF variable is
non-significant showing the occurrence of
multicollinearity. Analysis of variance results (See in
Table  3)  also  confirm   that   the   overall   model is
highly  significant  with  a  probability  of  95%.  The
results are in line with the findings of Yeniay & Gaoktos
[6]. To cope with the problem of multicollinearity
prediction methods: Ridge regression, Principal
component regression and partial least squares regression
are used in this study.

Table 2: OLS regression coefficients of fitting Model (2.1) to the RGDP data and multicollinearity diagnostic

Multicollinearity Diagnostic
-------------------------------------

Beta S.E’s  “t” statistic Sig. R-Square Tolerance VIF

Constant 5.555 0.054
FDI 0.075 0.019 4.029 0.000 0.929 **0.070 *14.209
ER 0.388 0.052 7.398 0.000 0.938 **0.061 *16.263
INF -0.016 0.019 -0.829 0.413 0.039 0.960 1.0410
INVGDP 0.131 0.059 2.219 0.033 0.974 **0.025 *39.385

*Multicollinearity is present because value of VIF is less than 10. ** Tolerance value is close to zero so predictors 
are collinear. VIF = 1/1–R  Where i= 1, 2, 3...P (P = no of regressors in the model) i

2

Table 3: Analysis of variance results for RGDP data

Model Sum of Squares d.f Mean Squares F Sig.

Regression 2.377 4 0.594 *831.094 0.000
Residual 0.024 34 0.001

Total 2.401 38

*Overall model is highly significant
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Table 4: Analysis Standardized Ridge estimates  for the RGDP data (1973-2011) 

k FDI ER INF INVGDP

0.0000 0.2570 0.4925 -0.0115 0.2641
0.0010 0.2558 0.4888 -0.0116 0.2686
0.0030 0.2539 0.4821 -0.0117 0.2762
0.0070 0.2519 0.4712 -0.0121 0.2874
0.0080 0.2517 0.4689 -0.0122 0.2896
0.0090 0.2515 0.4666 -0.0122 0.2916
0.0100 0.2513 0.4645 -0.0123 0.2934
0.0200 0.2521 0.4473 -0.0131 0.3060
0.0300 0.2545 0.4346 -0.0139 0.3125
0.0400 0.2572 0.4245 -0.0146 0.3163
0.0500 0.2598 0.4160 -0.0152 0.3186
0.0600 0.2623 0.4087 -0.0158 0.3199
0.0700 0.2644 0.4023 -0.0163 0.3207
0.0800 0.2663 0.3966 -0.0169 0.3210
0.0900 0.2680 0.3915 -0.0174 0.3211
0.1000 0.2695 0.3868 -0.0178 0.3209
0.1443 0.2738 0.3699 -0.0196 0.3189

… … … … …

Continue up to the value of 1
1.0000 0.2375 0.2590 -0.0289 0.2525

Table 5: Analysis Variance Inflation factor for different values of k

k VF VF VF VF1 2 3 4

0.0000 14.2099 16.2634 1.0414 39.3857
0.0010 13.1169 14.9139 1.0388 35.0782
0.0030 11.3750 12.7735 1.0338 28.3460
0.0070 9.0198 9.9090 1.0240 19.6286
0.0080 8.5832 9.3833 1.0216 18.0822
0.0090 8.1897 8.9113 1.0192 16.7126
0.0100 7.8331 8.4853 1.0169 15.4939
0.0200 5.5110 5.7653 0.9942 8.2611
0.0300 4.2832 4.3816 0.9728 5.1491
0.0400 3.5038 3.5308 0.9523 3.5317
0.0500 2.9562 2.9475 0.9327 2.5848
0.0600 2.5469 2.5197 0.9138 1.9831
0.0700 2.2281 2.1913 0.8956 1.5769
0.0800 1.9726 1.9310 0.8781 1.2897
0.0900 1.7633 1.7198 0.8611 1.0792
0.1000 1.5889 1.5450 0.8447 0.9202
0.1443 1.0759 1.0374 0.7775 0.5337
… … … … …
1.0000 0.1101 0.1062 0.2484 0.0763

Estimation  by  Ridge  Regression (RR) Method: values of the ridge constant “k”, different methods as we
Following Tables 4 & 5 contains the standardized Ridge discussed in the earlier section are used to select the most
estimates  and variance inflation factor (VIF) for suitable value of the ridge parameter. A similar
different values of k ranging from  0  to  1  for  the  RGDP observation  was  made  in  the  study  of  Chatterjee &
data (1973-2011). After fitting regression for different Hadi [2].
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Fig. 1: Ridge trace and Variance inflation factor plot: RGDP (1973-2011)

For RGDP data (1973-2011), the fixed point formula in the other variables  i,e.  produces  insignificant  results.
(2.5) gives To perform principal components regression, first of all we

first two Eigen values covers maximum 97% of the

The iterative method in (2.6) provides the resulting shown). Individual contribution of the 3 & 4 PC’s is
order: quite low to explain the variation for response variable
k  = 0.1183,k  = 01443 and k  = 01449. So, it converges (RGDP). If we include all PC’s in the model then theo 1 2

after two iterations to k = 0.1443. Ridge trace and variance results are equivalent to the OLS method as we discussed
inflation are presented both numerically and graphically in the earlier section (2.2). Eigen vector of the correlation
in Table 4 & Table 5 and Figure 1 respectively seems to matrix is orthogonal to each other which are presented in
stabilize for k around 0.020. Therefore, we have three Table 8. Therefore, two PC’s are sufficient to estimate the
estimates of k (0.1183, 0.1433 and 0.020). It is clear that coefficients of the variables which explain 97% variation
values of k must occur in the interval (0.020 to 0.1183). for dependent variable as suggested by both Eigen values

The resulting model in terms for the original variables method and scree plot. Also, the estimates of the
fitted by ridge method using k = 0.020. standardized and original regression coefficients using

RGDP = 5.5956+ 0.0723*FDI+ 0.3406*ER - which clearly gives different results as increase the
0.0143*INF+0.1672*INVGDP number of PC’s  in  the  model  Chatterjee  &  Hadi  [2].

(2.13) The results of OLS estimates are inadequate when we

Estimation by Principal Component Regression: Second component models, first one looks not properly fit
remedy to the problem of multicollinearity that has been because it covers low variation but in the second model
used in this study is PCR. Correlation matrix (presented in R-square increase from 0.9528 to 0.9767, we may conclude
Table  6)   indicates  that  almost  all  variables  are  highly strongly that our model is based on only two
correlated and only  INF  variable   is   not   correlated   to components.

have to need the appropriate number of PC’s. In Table 7

information. It is also confirmed that first two PC’s capture
the maximum information by the scree plot (which is not

rd th

the three components models are shown in Table. 9,

used all PC’s in the model. Two remaining principal

Table 6: Correlation matrix of the predictive variables

FDI ER INF INVGDP RGDP

FDI 1.00000 0.89528 -0.12690 0.95816 0.95244
ER 0.89528 1.00000 -0.17948 0.96370 0.97917
INF -0.12690 -0.17940 1.00000 -0.16349 -0.17565
INVGDP 0.95816 0.96370 -0.16349 1.00000 0.98686
RGDP 0.95244 0.97917 -0.17565 0.98686 1.00000



1 2 3 40.2570 0.4925 0.0115 0.2541Y X X X X= + − +    

1 1 2 3 40.565249 0.569010 0.140198 0.580574PC X X X X= − − + −   

2 1 2 3 40.112753 0.0527558 0.989199 0.077390PC X X X X= + + +   

3 1 2 3 40.718222 0.693886 0.042552 0.029474PC X X X X= − − −   

4 1 2 3 40.389792 0.438140 0.004429 0.809985PC X X X X= − − + +   
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Table 7: Eigen values of the correlation matrix

Eigen values Percentage of Explained variation Cumulative Percentage of Explained variation

2.916865 72.92 72.92
0.963175 24.08 97.00
0.103247 2.58 99.58
0.016713 0.42 100

Table 8: Eigen vector of the correlation matrix

Eigen vector 1 Eigen vector 2 Eigen vector 3 Eigen vector 4

-0.565249 -0.569010 0.140198 -0.580574
0.112753 0.052758 0.989199 0.077390
0.718222 -0.693886 -0.042552 -0.029474
-0.389792 -0.438140 0.004429 0.809985

Table 9: Comparison of estimated regression coefficients for standardize and original variables taking different number of PC’s

1  PC 1 & 2  PC’s All PC’sst st nd

---------------------------------------- -------------------------------------- ------------------------------------------
Variables Standardize Original Standardize Original Standardize Original

Constant 0 5.605741 0 5.595682 0 5.560681
FDI 0.3281 0.065482 0.3353 0.062341 0.2570 0.073763
ER 0.3303 0.394861 0.3337 0.340963 0.4925 0.375025
INF -0.0814 -0.014863 -0.0180 -0.012041 -0.0115 -0.012533
INVGDP 0.3370 0.255694 0.3420 0.189524 0.2641 0.144332

R-Square 0.9528 0.9767 0.9897

Now we use OLS method, the model in (2.8) can be data; first of all we calculate the weights vectors,
written in terms of standardize variables as: interpretation of the weights are very difficult (Table 10)

stage weights and standardize variables are used to

The principal components of the standardize components (Table 11.). The results are in line with the
predictor variables areas under: findings of Ahmad and Gilani [8]. In third stage we used

For the optimal number of latent variables in the fitting of

used on the basis of the PRESS criteria’s (Yeniay and

optimal number of components in the  PLSR  model.

those appropriate components to fit a PLSR

The final results of PCR using two PC’s is presented which is 0.0386068 and using X-variance method it is also
in original units in Equation (2.14) is confirmed that the value of the X- variance for two

GDP = 5.595682 + 0.06234164*FDI + 0.3409633*ER- captured by the regressors.
0.01204103*INF+0.189524*INVGDP The final results of PLSR using two components is

(2.14) presented in Equation (2.15) is

Estimation by Partial Least Squares Regression: RGDP=5.631214+0.091467*FDI+0.268771*ER -
Standardize variables are used to fit PLSR to the RGDP 0.010459*INF+0.186622*INVGDP× (2.15)

because of the signs of the coefficients. In the second

calculate the loadings for the partial least square

all four partial least squares components to fit a model.

PLSR, leave one out method for cross validation has been

Gaoktos [6] and X-variance method (i,e. which decide the

Where the value of X-variance is closer to one select

model).Second component gives minimum value of PRESS

component model is 0.995776; almost 100% variation is
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Table 10: PLS weights vectors

PLS PLS PLS PLS1 2 3 4

X 0.562145 -0.166145 -0.660561 0.4690931

X 0.577919 0.299813 0.669872 0.3569232

X -0.103672 0.938940 -0.328051 -0.0051563

X 0.582456 0.029997 -0.085517 -0.8077944

Table 11: Loadings for PLS Components

PLS PLS PLS PLS1 2 3 4

X 0.566506 0.06524 -0.702814 0.4690931

X 0.570048 0.06517 0.637723 0.3569232

X -0.128321 1.05385 -0.327586 -0.0051563

X 0.581669 0.05995 -0.012757 -0.8077944

Table 12: Efficiency of prediction models to RGDP data

RR PCR PLSR

*RMSE 0.0353 0.0272 0.0190

*RMSECV 0.0055 0.0042 0.0010

**CVP 0.9131 0.9336 0.9840

**R- Square 0.9824 0.9895 0.9951

Notes: RMSE=  ,    CVP =  ,   RMSECV= 

Where S y is the un-biased variance of the response variable which is RGDP in our study, PRESS is the prediction error which is calculated through leaves2

one out cross validation method, *Smaller values of RMSE and RMSECV indicate the fitted model is good, ** Larger value of CVP & R-Square tells us

the fitted model is best

Comparison of All Prediction Methods: In this section multicollinearity in the data sets than PLSR is much better
after estimating the coefficients of three prediction than the others and after this PCR is better than the RR
methods the next step is to check the efficiency of all model  respectively. It is also observed that after fitting
these prediction techniques using different statistical the models successfully on the basis of the variance
tools   like  RMSE,    RMSECV,    CVP   &  R-Square inflation factors of all the above models, values of VIF’s
(Table  12)  and  graphically  (Figure  2  &  3).  It can be are much smaller when we used PLSR model i,e.
easily  observed  from  Table  12  that RMSE and multicollinearity problem successfully remove in the
RMSECV are smaller for PLSR as compared to the other RGDP data because the values of VIF’s are smaller as
prediction techniques   similarly   the   largest   value   of compared to the OLS method (Table 2). VIF’s values for
CVP  and R-Square clearly indicates that the PLSR model all four regressors when we fit PCR model are: 5.1189,
is good. The second smallest values of RMSE and 4.7772, 1.0402 and 0.1302 and for the fitting of RR model:
RMSECV and the highest values of CVP and R-Square 5.5110, 7.7653, 0.9942 and 8.2611 which are quite smaller as
belong to the PCR model. Overall, we may conclude that compared to the OLS method. Statistical as well as
PLSR as the best model amongst  all   other   three graphical  results  indicate  that   the   PLSR   model  is
 models:  OLS,  RR  and  PCR. In general when there is no superior among others. The actual and fitted observations
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*X-axis: Observations Numbers Y- axis: observed and fitted values
Fig. 2: Actual and fitted observations by RR, PCR and PLSR

Fig. 3: Standard errors of the coefficients using all predictors are highly correlated. We have seen that all
predictors using OLS, PCR, RR and PLSR three shrinkage regression methods provide biased

of all three prediction models RR, PCR and PLSR are measured by Mean Square Error (MSE). It is found that
plotted in Figure. 2 and the histogram of the residuals of the best shrinkage regression model is the Partial Least
all fitted models (not presented) evidently  shows  that Squares Regression (PLSR) because it provides better
the PLSR model is the best model to the other models. results as compared to the other prediction methods on
These results are consistent with the study of Yeniay & the basis of the Root Mean Square Error (RMSE), Root
Goktas [6] and Ahmad & Gilani [8]. Figure. 3 show that the Mean Square Error cross Validation (RMSECV), Cross
standard errors of the PLSR regression model are quite Validation Parameter (CVP) and R-Square. In general when
low as compared to the others shrinkage regression there is no multicollinearity in the data set than Partial
models and the second good shrinkage regression model Least Squares Regression (PLSR) is superior to the others
is the PCR because its standard errors are small to the RR shrinkage models and after this Principal Component
and OLS models and in the end RR is the best model as Regression (PCR) is better than the Ridge Regression
compared to the OLS model. Hence the best models in (RR) model.

RGDP data are PLSR, PCR and RR respectively after
removing the problem of multicollinearity.

CONCLUSIONS

All three shrinkage regression models, Ridge
Regression (RR), Principal Component Regression (PCR)
and Partial Least Squares Regression (PLSR) provide more
informative results as compared to the Ordinary Least
Square (OLS) method to handle the problem of
multicollinearity on real GDP data in Pakistan when

regression coefficients but tend to have more precision as
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