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Abstract: In this paper, the new modified Homotopy Perturbation Method (HPM) is applied for analytical 
treatment of differential equations and integral equations. The new modified HPM yields an analytical 
solution in terms of a rapidly convergent infinite power series with easily computable terms. The efficiency 
of the new modified technique is examined by several illustrative examples. In all cases of differential and 
integral equations, the new modified HPM yields the exact solutions in minimal iterations only. 
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INTRODUCTION 

 
 Euler is known as the father of perturbation methods since J. Euler (1707-1783) and J.L. Lagrange (1736-1813) 
were the first to apply perturbation methods in celestial mechanics and Perturbation methods belong to perhaps, the 
most romantic area of modern mathematics. Various perturbation methods have been widely applied to solve 
nonlinear problems in mechanics, physics and other exact sciences. The coupling of the perturbation method and the 
homotopy method is called the Homotopy Perturbation Method (HPM). The HPM is the most effective and 
convenient method for both ODEs and PDEs without mathematical difficulties. The application of the Homotopy-
Perturbation Method (HPM) in nonlinear problems which has been devoted by scientists and engineers, because this 
method is to continuously deform a difficult problem into a set of problems which is easier to solve. The method 
yields rapid convergent series solutions in most cases.  
 In  recent  years, much attention has been devoted to the study of the Homotopy-Perturbation Method (HPM) 
[1-8] for solving a wide range of problems whose mathematical models yield differential equation or system of 
differential equations. HPM deforms a difficult problem into a set of problems which are easier to solve without any 
need to transform nonlinear terms. The applications of HPM in nonlinear problems have been demonstrated by 
many researchers, cf. [9-12]. Recently, HPM was employed for solving singular second-order differential equations 
[13], nonlinear population dynamics models [14] and time-dependent Emden-Fowler type equations [15], the Klein-
Gordon and sine-Gordon equations [16]. Very recently, Chowdhury et al. [17] were the first to successfully apply 
the multistage Homotopy-Perturbation Method (MHPM) to the chaotic Lorenz system and Odibat [18] propose a 
new modification of the HPM for linear and nonlinear operators. Chowdhury et al. [19] proposed modified HPM for 
solving differential and integral equations. 
 Wazwaz [20, 21] proposed a new modification of the Adomian Decomposition Method (ADM) to handle the 
linear and nonlinear operators. 
 In this work, we will present an alternative approach called new modified HPM for finding series solutions to 
linear and nonlinear differential and integral equations. The efficiency and accuracy of modified HPM and new 
modified HPM are demonstrated through several test examples. 
 

METHODOLOGY 
 
 Homotopy-Pertuebation Method (HPM) is a reliable and effective method for solving various nonlinear 
problems.  In   this   section,  first  we  shall  present  a  review  of  the  standard  HPM  and  the  modified  HPM  for  
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convenience of the readers and finally we will introduce a new modification of HPM to handle linear and nonlinear 
inhomogeneous differential equations. 
To do so, we consider the following general nonlinear differential equation 
 
                                                              Lu Ru Nu g(x)+ + =  (1) 
 
where L is the highest order derivative which is assumed to be easily invertible, R the linear differential operator of 
order less than L, Nu represents the nonlinear terms and g is the source term. 
According to the HPM, we construct a homotopy of Eq. (1) which satisfies 
 
                                          0 0H(u,p) L(u) L(v ) pL(v ) p[R(u) N(u) g(x)] 0= − + + + − =

 
(2)  

 
where p∈[0,1] is an embedding parameter and u0 =  v0 

is an initial approximation which satisfies boundary 
conditions. When we put p = 0 and p = 1 in Eq. (2), we get 
 
                                        0H(u,0) L(u) L(v ) 0and H(u,1) Lu Ru Nu g(x) 0= − = = + + − =

 
(3) 

 
which are the linear and nonlinear original equations respectively. In topology this called deformation and 

0L(u) L(u )− ) and Lu Ru Nu g(x)+ + −  are called homotopic. Supposing the solution of (1) can be expressed as  

 

                                             n 2 3
n 0 1 2 3

n 0

u(x) p u u (x) pu (x) p u (x) p u ( x )
∞

=

= = + + + +∑ L  
(4) 

 
According to HPM, the approximate solution of Eq. (4) can be expressed as a series of the power of p, i.e., 
 
                                                          0 1 2 3p 1

u limu u u u u
→

= = + + + L  (5) 

 
The series (5) is convergent in most of the cases. However the rate of convergence depends on L(u). 
Now we substitute (4) into (2) and equating the like terms of p, we obtain 
 

( )1
0u (x) L (g(x)) x f(x)−= + φ =  

 
                                    ( ) ( ) ( ) ( )k 1 1 1 1 1

k 1 k k k kp : u (x) L Ru L Nu L Ru L H , k 0+ − − − −
+ = − − = − − ≥

 (6)
 

 
where the function f (x) represents the terms arising from integrating the source term g(x) and from using the given 
conditions, φ(x), all of which are assumed to be prescribed. 
 The  nonlinear  term  Nuk = F(u)  is  usually  represented  by  an  infinite  series  of  the  so-called  He’s 
polynomials [22], 
 

k
k 0

F(u) H
∞

=

= ∑  

 
 The polynomials Hk are generated for all kinds of nonlinearity so that A0 depends only on u0, A1 depends on u 0 

and u1 and so on. The He’s polynomial 
1k 0 2 kA (u , u , u , ,u )L  [22], is given by, 

 

                                                    
k k

i
k i p 0k

i 0

1 d
H N p u . (A)

k!dp =
=

  
=   

  
∑   
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The modified HPM: In our earlier works [19] we have introduced an alternative of choosing the initial 
approximations is  
 

                                                   
         

( )1
0v L (g(x)) x f(x)−= + φ =  (7) 

 
 The modified form is based on the assumption that the initial approximation v0 

given in Eq. (7) can be 
decomposed into two parts, namely f0 and f1 such that f = f0+f1. 
 The MHPM have suggested slight variation in the standard HPM on the components u0 and u1. The suggestion 
is that only the part f0 be combined with the component u0 and f1 be added with u1. Under this assumption Eqn. (6) 
become as follows 
 

0 0u ( x ) f (x)=
 

( ) ( )1 1 1
1 1 0 0p : u f L Ru L Nu− −= − −

 
                                   ( ) ( )k 2 1 1

k 2 k 1 k 1p : u (x) L Ru L Nu+ − −
+ + += − −

 
( ) ( )1 1

k 1 k 1L Ru L H , k 0− −
+ += − − ≥

 
(8)  

 
 The zeroth component uo in the recursive scheme of the standard HPM (6) is defined by the total function f (x), 
but in recursive scheme (8) of the modified HPM the zeroth component uo is defined only by a part f0(x) of f (x). 
And the remaining part f1(x) of f (x) is added to the component u1 in (8). The small difference of reducing the 
number of terms of u0 could reduce the computational work. Furthermore, because of the dependence of the He’s 
polynomials on the initial component u0 

in the nonlinear equations, the reduction of terms in u0 could reduce 
calculations. Additional, this small difference in the components u0 and u1 may give the exact solution by using two 
iterations only. However, the success of the MHPM depends completely on the correct selection of the function f0 
and f1, here the trials are the only technique that can be used. 
 
The new modified HPM: Iinspired by Wazwaz and Sayed [20], we propose the ƒ(x) can be expand by a series of 
infinite components. Under this idea we can expressed ƒ(x) in Taylor series as  
 

n
n 0

f(x) f (x)
∞

=

= ∑  

 
Under this hypothesis Eqn. (6) can be written as follows 
 

0 0u (x) f ( x )=
 

 
                                ( ) ( ) ( ) ( )k 1 1 1 1 1

k 1 k 1 k k k 1 k kp : u f (x) L Ru L Nu f (x) L Ru L H , k 0+ − − − −
+ + += − − = − − ≥  

(9) 
 
 If ƒ(x) consists of one term only then the scheme (9) convert to (6) and if ƒ(x) consists of two terms then the 
scheme (9) convert to (8). It is obvious that the algorithm (9) of the new modification of HPM reduces the number 
of terms involved in every component and also minimized the size of calculations compare to the standard HPM. 
Moreover, this reduction of terms in each element facilitates the construction of He’s polynomials. 
 

APPLICATIONS TO DIFFERENTIAL EQUATIONS 
 

 To present a clear impression of this works, we choose two numerical examples of linear and nonlinear 
differential equations. The first example will be examined by both modified HPM and our proposed new modified 
HPM and the second example of nonlinear differential equations will be tested using the new modification of HPM 
presented above. 
 
Example 1: First we consider the linear partial differential equation [20] 
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                                              ( )
2 2

2 2
u u uu 0, u(x,0) 1 sinx, x,0 0

tt x
∂ ∂ ∂+ + = = + =

∂∂ ∂
 (10) 

 
Now we rewrite Eq. (10) in operator form as follows 
 
                                                                  xxLu u u 0+ + =  (11) 

where 
2

2
L

t
∂=
∂

 and ( )
t t

1

0 0
L dsds− = •∫ ∫  is a two-fold integral operator. 

We construct a homotopy of the Eqn. (11) which satisfies the following relation  
 
                                                      0 0 xxL(u) L(v ) pL(v ) p[u u] 0− + + + =  (12) 

 
The modified HPM: To apply the modified HPM, let us take the initial approximation, 
 

( )1
0 0 1v L (0) 1 sinx f(x) f f−= + + = = +

 
where ƒ0 = 1 and ƒ1 = sin x. 
The iterative formula based on (8) we obtain, 
 

0u (x,t) 1=
 

( )( ) ( )t t1 1 2
1 0 0 xx 0 0

1
p : u ( x , t ) sinx L u u sinx 1 0 dtdt sinx t

2
−= − + = − + = −∫ ∫  

( )( )2 1 1 2 4
2 1 1 xx

1 1p : u ( x , t ) L u u L sinx t sinx t
2 4!

− −  = − + =− − − =    

( )( )3 1 6
3 2 2 xx

1
p : u (x,t) L u u t

6!
−= − + =−  

( )( )4 1 8
4 3 3 xx

1
p : u (x,t) L u u t

8!
−= − + =

M
 

Hence the series solution is given by  
 

2 4 6 81 1 1 1u(x,t) sinx 1 t t t t
2! 4! 6! 8!

 = + − + − + +  
L  

 
and this will be needed more terms to yield the close-form solution u(x,t) sinx cost.= +  
 
The new modified HPM: The Taylor expansion of ƒ(x) = 1+sin x is  
 

                                                      3 5 71 1 1
f(x) 1 x x x x

3! 5! 7!
= + − + − +L  (13) 

The iterative formula based on (9) we obtain 
0u (x,t) 1=

 

( )( )1 1 2
1 0 0 xx

1
p : u ( x , t ) x L u u x t

2!
−= − + = −

 
( )( )2 3 1 3 2 4

2 1 1 xx

1 1 1 1
p : u ( x , t ) x L u u x xt t

3! 3! 2 4!
−= − − + =− − +

 

( )( )3 5 1 5 6 4 2 3 2
3 2 2 xx

1 1 1 1 1 1
p : u (x,t) x L u u x t xt xt x t

5! 5! 6! 24 2 12
−= − + = − + + +  

( )( )4 7 1 7 8 4 3 2 5 2 6 3 4
4 3 3 xx

1 1 1 1 1 1 1 1
p : u (x,t) x L u u x t xt x t x t xt x t

7! 7! 8! 12 12 240 720 144
−= − − + =− − − − − −  
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and so on. Hence the series solution is given by  
 

3 5 2 41 1 1 1u(x,t) x x x 1 t t
3! 5! 2! 4!

   = − + − + − + +      
L L  

 
 Therefore proceeding in this way by cancelling these noise terms from series solution and this will in the limit 
of infinitely many terms gives close-form solution 
 

u(x,t) sinx cost= +  
 
Example 2: Now consider the nonlinear differential equation [20] 
 

                                                  
2

2

d u du 1 du
u u sin2x,u(0) 0, (0) 1

dx dx 2 dx
+ + = = =

 
(14) 

  
We construct a homotopy which satisfies the following relation  
 

                                                  
2 2 2

0 0
2 2 2

d u d v d v du 1
p u u sin2x 0

dx dx dx dx 2
 

− + + + − = 
 

 

 
Let us take the initial approximation 
 

                                                  1
0

1 5 5 1
v L ( sin2x) x x sin2x f(x)

2 4 4 8
−= + = − =  

 

The Taylor expansion of 
5 1

f(x) x sin2x
4 8

= −  is  

 

                                                  3 5 7 91 1 1 1
f(x) x x x x x

6 30 315 5670
= + − + − +L   

 
The iterative formula based on (9) we obtain, 
 

0u ( x ) x=
 

( )3 1 3
1 0 0

1 1
u (x) x L u H x

6 3!
−= − + = −

 

 

( )5 1 5
2 1 1

1 1
u (x) x L u H x

30 5!
−= − − + =

 

( )5 1 7
3 2 2

1 1
u (x) x L u H x

315 7!
−= − + =−  

 
where Hn, n≥0 are He’s polynomial were determined by using the formula give in Eq. (A). 
Hence the series solution is given by  
 

3 51 1
u(x) x x x

3! 5!
= − + −L  

 
Therefore proceeding in this way in the limit of infinitely many terms gives close-form solution 
 

u(x) sinx=  
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APPLICATIONS TO INTEGRAL EQUATIONS 

 
Example 3: Consider the linear integral equation [20] 
 
                                                                    

x

0
u(x) 1 sinhx coshx u(t)dt= + − +∫  (15)

  
We construct a homotopy of the Eqn. (14) which satis fies the following relation  
 

                                                            
x

0
u v p v 1 sinhx coshx u(t)dt 00 0

 − + − − + − =  ∫   (16) 

 
The modified HPM: To apply the modified HPM, let us take the initia proximation, 
 

v 1 sinhx coshx f(x) f f0 0 1= + − = = +
 

 
where ƒ0 = sinh x and ƒ1 = 1 - cosh x 
The iterative formula based on (8) we obtain, 
 

0 0u (x) f sinhx= =
 

x x1
1 1 00 0

p : u ( x ) f u( t )d t 1 coshx sinhtdt 0= + = − + =∫ ∫  
xk 1

k 1 k0
p : u (x) u (t)dt 0 ,k 1+

+ = = ≥∫  
 
 Hence, by using only two iterations the exact solution is reached, u(x) = sinh x. However, the success of this 
MHPM depends completely on the correct selection of the function f0 and f1, here the trials are the only technique 
that can be used. 
 
The new modified HPM: The Taylor expansion of 1 sinhx coshx f(x)+ − =  is  
 

n
n 1 2 3 4 5 6

n 1

x 1 1 1 1 1f(x) ( 1) x x x x x x
n! 2! 3! 4! 5! 6!

∞
+

=

= − = − + − + − +∑ L  

 
The iterative formula based on (9) we obtain, 
 

0u (x) x=
 

x x1 2 2 2 2
1 00 0

1 1 1 1
p : u ( x ) x u (t)dt x xdt x x 0

2! 2! 2! 2
= − + = − + = − + =∫ ∫

 x x2 3 3 3
2 10 0

1 1 1
p : u ( x ) x u (t)dt x 0dt x

3! 3! 3!
= + = + =∫ ∫  

x x3 4 4 3
3 20 0

1 1 1
p : u (x) x u (t)dt x t dt 0

4! 4! 3!
= − + = − + =∫ ∫  

x x4 5 5 5
4 30 0

1 1 1p : u (x) x u( t )d t x 0dt x
5! 5! 5!

= + = + =∫ ∫   
x x5 6 6 5

5 40 0

1 1 1p : u (x) x u( t )d t x t d t 0
6! 6! 5!

= − + = − + =∫ ∫  
x x6 7 7 7

6 50 0

1 1 1p : u ( x ) x u (t)dt x 0dt x
7! 7! 7!

= + = + =∫ ∫  
 
Hence the series solution can be written as: 
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3 5 71 1 1

u(x) x x x x
3! 5! 7!

= + + + +L  

 
 Therefore proceeding in this way by cancelling noise terms from series solution and this will in the limit of 
infinitely many terms gives close-form solution 
 

u(x) sinhx=  
 
Example 4: Finally, we consider the nonlinear integral equation [20] 
 

                                                           
x 2

0
u(x) secx tanx u(t)dt= + − ∫

 
(17) 

 
Now we construct a homotopy which satisfies the following relation  

 

                                                   x 2

0
u v p v secx tanx u(x)dx 00 0

 − + − − + =  ∫  
 

(18) 

 
The modified HPM: To apply the modified HPM, let us take the initial approximation, 
 

v secx tanx f(x) f f0 0 1= + = = +  
where ƒ0 = sec x and ƒ1 = tan x. 
The iterative formula based on (8) we obtain 

0 0u (x) f secx= =  

 
x x x1 2 2

1 0 00 0 0
p : u ( x ) tanx H (x)dx tanx u (x)dx tanx sec xdx 0= − = − = − =∫ ∫ ∫  

 
xk 1

k 1 k0
p : u (x) H (x)dx 0, k 1+

+ = = ≥∫  

 

where Hn, n≥0 are He’s polynomial were determined by using the formula give in Eq. (A). Therefore, we get exact 
solution immediately u(x) = sec x, which completely depends on the correct selection of the function f0 and f1. 
 
The new modified HPM: The Taylor expansion of sec x+tan x = ƒ(x) is  
 

2 3 4 5 6 71 1 5 2 61 17
f(x) 1 x x x x x x x

2 3 24 15 720 315
= + + + + + + + + L  

 

Following the iterative formula (9) we obtain 
 

0u (x) 1=  
x1 2

1 00
p : u ( x ) x u (x)dx x x 0= − = − =∫  

x x2 2 2 2
2 1 0 10 0

1 1 1
p : u (x) x H dx x 2 u u d x x

2 2 2
= − = − =∫ ∫  

x x3 3 3 2 3 3
3 2 0 2 10 0

1 1 1 1
p : u (x) x H dx x (2u u u )dx x x 0

3 3 3 3
= − = − + = − =∫ ∫  

x x4 4 4 4
4 3 0 3 1 20 0

5 5 5
p : u (x) x H dx x (2u u 2 u u ) d x x

24 24 24
= − = − + =∫ ∫  

x x x5 5 5 2 5 4 4 5 5
5 4 0 4 1 3 20 0 0

2 2 2 2 1 2 2
p : u (x) x H dx x (2u u 2 u u u )dx x ( x x ) d x x x 0

15 15 15 15 4 15 15
= − = − + + = − + = − =∫ ∫ ∫

M
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where Hn, n≥0 are He’s polynomial were determined by using the formula give in Eq. (A).  
Hence the series solution can be written as 
 

2 4 6 81 5 61 277
u(x) 1 x x x x

2 24 720 8064
= + + + + +L  

 
this will in the limit of infinitely many terms gives close-form solution 
 

u(x) secx=  
 

CONCLUSION 
 
 In this paper, we first proposed a reliable modification to the homotopy-perturbation method (HPM) by 
introducing a new technique to choose initial component that already reduced the computational work and 
accelerates the rapid convergence of the HPM series solution. We have chosen two examples from differential 
equations and two examples from integral equations. From the test examples, we see that the both the modified 
HPM and new modification of the HPM provided exact solution by using minimal terms in series solution. However 
the success of the modified HPM depends completely on the correct selection of the function f0 and f1. The new 
modification overcomes the difficulties expanding by a series of infinite components. It can be concluded that the 
new modification of HPM is a promising tool for solving linear-nonlinear differential and integral equations. 
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