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Abstract: In this paper, a numerical scheme based on adaption of standard Adomian Decomposition 
Method (ADM) is applied to the chaotic Lü system. Then, the standard ADM is converted into a hybrid 
numeric-analytic method called the multistage ADM (MADM). Numerical comparisons with the standard 
ADM and the fourth-order Runge-Kutta method (RK4) is made in order to prove that MADM is the 
reliable method for nonlinear problems. 
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INTRODUCTION 
 
 An enormous research work has been devoted to the study of chaos nonlinear phenomena for the past three 
decades. Dynamical systems that exhibit chaotic behaviour are very sensitive to the initial conditions. Due to the 
complexity of the chaotic system; it is difficult to be solved using existing numerical solutions. The present work is 
motivated by the desire to obtain numerical solutions to the chaotic Lu system using Adomian decomposition 
method (ADM). In 2002, Lu and Chen constructed the following chaotic system [1] 
 
                                                                     x a(y x)= −&  (1) 

 
                                                                    y xz cy= − +&  (2) 

  
                                                                     z xy bz= −&  (3) 

 
where x,y and z are state variables and a,b,and c are positive parameters. This system exhibits chaotic behaviour 
when a = 36, b = 3 and c = 20. According to a mathematical sense defined by Vanecek and Celikovské, this system 
represents the transition between the Lorenz system and the Chen system [1, 2]. System (1-3) is later referred to as 
the Lu system. Some detailed investigations on the Lu system (1-3) can be found in [3] for numerical study of some 
dynamical behaviours of the system. 
 The ADM is proven to be a powerful method in solving various problems [4-7]. ADM has been used in solving 
nonlinear many chaotic systems like Lorenz, Chen and Rossler [8-11]. However, the implementation of the 
decomposition  method  mainly  depends  upon  the  calculation  of  Adomian polynomials for nonlinear operators 
[12, 13]. Although ADM is said to be powerful method to be used, but as proved by [11], it is not guaranteed to give 
analytical solutions valid globally in time. This can be overcome by applying ADM over successive time intervals, 
as first hinted in [4]. This hybrid numeric-analytic procedure of ADM, is called multistage ADM (MADM), has 
been widely applied to many systems including Lorenz [8], Rossler [11] and for solving nonlinear algebraic 
equations and boundary value problems [14-19].  
 In this paper, MADM is introduced to solve the chaotic LU system (1-3). The numerical comparison of MADM 
with standard ADM and existing method fourth-order Runge-Kutta (RK4) is made. 
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SOLUTION METHOD 

 
Following [8], we consider the general system  
 

                                                       
n n n

X a X a X X ,p qi ij j ipqp 1q 1j 1
i 1,2, ,n.

′ = +∑ ∑ ∑
= ==

= …  

(4) 

 
where the prime denotes differentiation with respect to time. If we denote the linear term as Ri1 and the non-linear 
term as Ri2, then we can write the above system of equation in the operator form 
 
                                                       LX R R i 1,2, ,ni i1 i2= + = …  (5) 

 
where L is the differential operator d(.)/dt. Applying the inverse (integral) operator L-1 to (5) we obtain 
 

                                                       
1 1X (t) X(t*) L R L Ri i i1 i2

i 1,2, ,n.

− −= + +

= …  (6)  

 
 By assuming the general system in (4) (or equivalent to (5)) is an initial-value problem, its solution is uniquely 
determined via the information xi(t*)(i = 1,2,…,n). According to the ADM [5, 6], the solution xi(t) is given by the 
series 
 

                                                     X (t) X (t), i 1,2, , ni imm 0

∞
= =∑

=
…

 
(7)

 
 
Bearing this in mind, the linear term Ri1 then becomes 
 

                                                               
n

R a Xi1 ij imm 0j 1

∞
= ∑ ∑

==
 (8) 

So that L-1Ri1 is given by  

                                                         
tn1L R a X dti1 ij imj 1m 0 t *

i 1,2, ,n.

∞− = ∑ ∑ ∫
= =

= …
 (9) 

 
The non-linear term Ri2 

is decomposed as [5, 6] 
 

                                                        
n n

R a Ai2 ipq im,p,qp 1q 1 m 0

∞
= ∑ ∑ ∑

= = =
 (10) 

 
Where the A im,p,q’s are the so-called Adomian polynomials. In this case, it is given by the formula [5, 6] 
 

                                            
m1 d k kA M( X X )mim,p,q kp kqm ! d k 0 k 0 0

∞ ∞ = λ λ∑ ∑ λ = = λ=
 

(11) 

 
Where M(x,y) = xy for each m = 0,1,2,… Moreover L-1Ri2 is given by 
 

                                                          
tn n

1
i2 ipq im,p,q

p 1 q 1 m 0 t*

L R a A dt
∞

−

= = =

= ∑∑ ∑∫  (12)  
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Putting (7), (9) and (12) into (6) we have then for each i = 1,2,…,n 
 

                              ( ) ( )
t tn n n

X t X t * a X dt a A dtim i ij im ipq im,p,qm 0 m 0 p 1q 1 m 0j 1 t* t*

∞ ∞ ∞
= + +∑ ∑ ∑ ∑ ∑ ∑∫ ∫

= = = = ==
 (13) 

 
Consequently, we have for each i = 1,2,…,n                                                                   X X (t*)i0 i=

 
(14)

  
 

                                              
t tn n n

X a X dt a A dti1 ij i0 ipq i0,p,qp 1q 1j 1 t* t*
= +∑ ∑ ∑∫ ∫

= ==
 

(15) 

 

                                             
t tn n n

X a X dt a A dti2 ij i1 ipq i1,p,qp 1q 1j 1 t* t*
= +∑ ∑ ∑∫ ∫

= ==
 (16)  

 

                                          
t tn n n

X a X dt a A dti,m 1 ij im ipq iim,p,qp 1q 1j 1 t* t*
= +∑ ∑ ∑∫ ∫+ = ==

 (17)  

 
Upon calculating the polynomials (11) and integrating, one then has for all t≥t* 
 

                                                
m(t t*)X (t) d , ,i 1,2, ,ni im m!m 0

∞ −= =∑
=

…  (18)  

 
Where the coefficients d im are given by 
                                                                    ( )d X ti0 i=  (19) 

 

                              ( )
d dn n n m 1 qk p(m k 1)

d a d m 1 ! a , m 1im ij j(m 1) ipq k! k!(m k 1)p 1q 1j 1 k 0

− − −
= + − ≥∑ ∑ ∑ ∑− − −= == =

 (20)  

 
RESULTS AND DISCUSSION 

 
 There are 3 methods used in this paper to solve the LU system, which are ADM, MADM and the well-
established RK4 as the reference. The MADM algorithm discussed is coded in the computer algebra package Maple 
together with the Maple built-in fourth-order Runge-Kutta. The Maple environment variable Digits controlling the 
number of significant digits is set to 16 in all calculations done in this paper. In this paper, the system (1)-(3) is 
chaotic for the parameter a = 36, b = 3 and c = 20 the initial conditions are x(0) =-1, y(0) = 2 and z(0) = 6. The 
simulation done in this paper is between t = 0 to 5. The solutions for 15-terms ADM on LU system are obtained as 
following: 
 

x = -1.0 + 108.0t-1116.000000 t2 + 14904.00000 t3-99663.00000 t4 + 633329.4000 t5 

      -2953565.400 t6 + 12353885.16 t7-57191750.94 t8 + 348616602.2 t9-3132645470 t10  

       + 27260231260 t11-224688814200 t12 + 1637561100000 t13-10722147350000 t14  
 
y = 2.0 + 46.00 t + 126.0000000 t2 + 3830.333333 t3-11700.58333 t4 + 141068.5000 t5  
      -551421.0639 t6-355392.8282 t7 + 29962399.58 t8-521562694.8 t9 + 5196869637 t10  

      -47636040140 t11 + 366652694300 t12-2532162870000 t13 + 15044012470000 t14 

 
z = 6.0-20.00 t + 115.0000000 t2 + 755.000000 t3-3503.833332 t4 + 156306.0167 t5  
     -1264706.125 t6 + 14342080.01 t7-105862688.4 t8 + 737880888.2 t9-3943767312 t10  

      +12755709360 t11 + 38293419600 t12-1278826847000 t13 + 15286095180000 t14 
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Table 1: Determination of accuracy of RK4 for Chaotic Lu system  

 ∆ = |RK40.01-RK40.001| 
 --------------------------------------------------------------------------------------------------------------------------------------- 
t  ∆x ∆y ∆z 

0.5 0.0014340 0.001185 0.0003733 
1.0 0.0009131 0.001317 0.0016940 
1.5 0.0035760 0.003748 0.0007725 
2.0 0.0010330 0.004104 0.0142100 
2.5 0.0212000 0.017110 0.0182000 
3.0 0.0313200 0.025750 0.0050150 
3.5 0.0189000 0.022650 0.0036750 
4.0 0.2626000 0.167600 0.1903000 
4.5 0.1756000 0.285300 0.0939600 
5.0 1.1660000 0.635400 2.5710000 

 ∆ = |RK40.001-RK40.0001| 
 --------------------------------------------------------------------------------------------------------------------------------------- 
t  ∆x ∆y ∆z 

0.5 1.005E-07 7.881E-08 4.693E-09 
1.0 3.371E-08 6.750E-08 1.256E-07 
1.5 2.338E-07 2.362E-07 1.797E-08 
2.0 1.034E-07 2.283E-07 8.886E-07 
2.5 1.300E-06 1.048E-06 1.121E-06 
3.0 1.941E-06 1.589E-06 3.214E-07 
3.5 1.146E-06 1.376E-06 2.293E-07 
4.0 1.563E-05 9.836E-06 1.147E-05 
4.5 1.094E-05 1.735E-05 5.097E-06 
5.0 5.726E-05 1.724E-05 0.0001507 

 
Table 2: Differences between 15-terms ADM and 15-terms MADM with RK4 solutions  

 ∆ = |ADM-RK40.001| 
 --------------------------------------------------------------------------------------------------------------------------------------- 
t  ∆x ∆y ∆z 

0.5 4.986E-08 6.795E-08 7.897E-08 
1.0 9.285E-12 1.284E-13 1.406E-13 
1.5 2.838E-15 3.943E-15 4.219E-15 
2.0 1.631E-17 2.271E-17 2.402E-17 
2.5 3.763E-18 5.248E-18 5.506E-18 
3.0 4.879E-19 6.810E-19 7.110E-19 
3.5 4.252E-20 5.940E-20 6.178E-20 
4.0 2.772E-21 3.874E-21 4.018E-21 
4.5 1.448E-22 2.024E-22 2.095E-22 
5.0 6.350E-22 8.882E-22 9.175E-22 

 ∆ = |MADM-RK40.001| 
 --------------------------------------------------------------------------------------------------------------------------------------- 
t  ∆x ∆y ∆z 

0.5 1.005E-07 7.882E-08 4.693E-09 
1.0 3.371E-08 6.751E-08 1.256E-07 
1.5 2.338E-07 2.362E-07 1.797E-08 
2.0 1.034E-07 2.283E-07 8.887E-07 
2.5 1.301E-06 1.048E-06 1.121E-06 
3.0 1.941E-06 1.589E-06 3.214E-07 
3.5 1.146E-06 1.377E-06 2.293E-07 
4.0 1.564E-05 9.837E-06 1.147E-05 
4.5 1.094E-05 1.735E-05 5.098E-06 
5.0 5.727E-05 1.725E-05 0.0001507 
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Fig. 1: Phase portraits of 15-term MADM 
 

 
 

Fig. 2: Comparing 15-term MADM with RK4 for x on ∆t=0.001 
 

 As there is no exact solution for the chaotic system, the accuracy of the proposed method is compared to the 
numerical solution by Runge-Kutta method. The step size of ∆t=0.001 is chosen from the differences of the solution 
of RK4 at different step size; ∆t=0.01, ∆t=0.001 and ∆t=0.0001 as presented in Table 1. The step size of ∆t=0.001 is 
selected in this entire work as it gives small error and computationally costly as the time taken is reasonable In this 
paper, we fix the number of terms to be 15 and step size to be ∆t=0.001. The differences of solutions of ADM, 
MADM and RK4 are given in Table 2. As we can see the ADM solution is far away from the Runge-Kutta even at 
t=1 while MADM agree with RK4 solution very well. The 15-term MADM have been illustrated into phase portraits 
xy, yz, xz and xyz in Fig. 1. Also, the solutions of 15-term MADM for x, y and z have been plotted into graphs in 
Fig. 2-4 respectively for comparing MADM with RK4.  
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Fig. 3: Comparing 15-term MADM with RK4 for y on ∆t=0.001 
 

 
 
Fig. 4: Comparing 15-term MADM with RK4 for z on ∆t=0.001 
 

CONCLUSION 
 
 The chaotic Lü system is solved accurately by MADM. The method has the advantage of giving an analytical 
form of the solution within each time interval which is not possible in purely numerical techniques like RK4. The 
present technique offers an explicit time-marching algorithm that works accurately over such a bigger time step than 
the RK4. The results presented in this paper suggest that MADM is also readily applicable to the chaotic systems 
involving more complex dynamical behaviours. 
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