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Abstract: In this paper, a numerical scheme based on adaption of standard Adomian Decomposition
Method (ADM) is applied to the chaotic LU system. Then, the standard ADM is converted into a hybrid
numeric-analytic method called the multistage ADM (MADM). Numerical comparisons with the standard
ADM and the fourth-order Runge-Kutta method (RK4) is made in order to prove that MADM is the
reliable method for nonlinear problems.
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INTRODUCTION

An enormous research work has been devoted to the study of chaos nonlinear phenomena for the past three
decades. Dynamical systems that exhibit chaotic behaviour are very sensitive to the initial conditions. Due to the
complexity of the chaotic system; it is difficult to be solved using existing numerical solutions. The present work is
motivated by the desire to obtain numerical solutions to the chaotic Lu system using Adomian decomposition
method (ADM). In 2002, Lu and Chen constructed the following chaotic system [1]

x=a(y- X) @
y:-XZ+Cy (2)
z=xy- bz (©)

where x,y and z are state variables and a,b,and ¢ are positive parameters. This system exhibits chaotic behaviour
when a= 36, b = 3 and ¢ = 20. According to a mathematical sense defined by Vanecek and Celikovské, this system
represents the transition between the Lorenz system and the Chen system [1, 2]. System (1-3) is later referred to as
the Lu system. Some detailed investigations on the Lu system (1-3) can be found in [3] for numerical study of some
dynamical behaviours of the system.

The ADM is proven to be a powerful method in solving various problems [4-7]. ADM has been used in solving
nonlinear many chaotic systems like Lorenz, Chen and Rossler [8-11]. However, the implementation of the
decomposition method mainly depends upon the calculation of Adomian polynomials for nonlinear operators
[12, 13]. Although ADM is said to be powerful method to be used, but as proved by [11], it is not guaranteed to give
analytical solutions valid globally in time. This can be overcome by applying ADM over successive time intervals,
as first hinted in [4]. This hybrid numeric-analytic procedure of ADM, is caled multistage ADM (MADM), has
been widely applied to many systems including Lorenz [8], Rossler [11] and for solving nonlinear algebraic
equations and boundary value problems[14-19].

In this paper, MADM is introduced to solve the chaotic LU system (1-3). The numerical comparison of MADM
with standard ADM and existing method fourth-order Runge-Kutta (RK4) is made.
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SOLUTION METHOD

Following [8], we consider the general system

n n
X¢ a %J .+ a a alpq qu,

p=1q9=1 @)

|=1,2,...,

where the prime denotes differentiation with respect to time. If we denote the linear term as R;; and the non-linear
term as R;,, then we can write the above system of equation in the operator form

LX; =Ry +R i=1,2,....n ®

i1 2
where L isthe differential operator d(.)/dt. Applying the inverse (integral) operator L™ to (5) we obtain

X, (1) = X{t*) +|_‘1Ril +L 1Ri2
i=12...n. ©)

By assuming the general system in (4) (or equivalent to (5)) is an initial-value problem, its solution is uniquely
determined via the information x(t*)(i = 1,2,...,n). According to the ADM [5, 6], the solution %(t) is given by the
series

¥ .
Xi(t):mazoxim(t), i=1,2,...,n )

Bearing thisin mind, the linear term R;; then becomes

n ¥
Rll i= 1m Oauxlm (8)
Sothat LR is given by
'R =4 & a Lx dt
i1 j=1im=0 IJ im 9)
i=12,...,n

The non-linear term R, is decomposed as [5, 6]

R, = S 4 z A 10
i2 _pa:]_qa:_’]_aipqma:o im,p,q ( )
Wherethe Aimpq’ s are the so-called Adomian polynomials. In this case, it is given by the formula[5, 6]
1 dM ¢ ¥ ky U
imp.q m'dlmgM( S0k, )
Where M(x,y) = xy for eachm=0,1,2,... Moreover LR, is given by
1 d J &
L Ri2 a a. a1pqa. OAImPCI (12)

N

p=lq m=0 tx
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Putting (7), (9) and (12) into (6) we havethenfor eachi =1,2,...,n

¥

S

¥
a X. (t)= Xl(t*)+g a d+a A dt

t
. & dA
m=0 'M j=1m= Oa”t* im p—lq-la]pqm:O g Impg

Consequently, we havefor eachi=1,2,...,n

Xip =%; )

n t
X aut(*)x dt+aa dt

o1 Pa 00,0,

n t
x —aaloxdt+ ct

p—lq—lalpqt* il P.a

n t
X. dt +
|,m+1 a]jt* im piilqa_lalpqt* ||mpq

Upon calculating the polynomials (11) and integrating, one then hasfor all t3t*

¥ - M
x0= 4 d v =120

m=0 M m
Where the coefficients di,, are given by

:Xi(t)

m-1 9ok Yp(m-k-1)

n
d. nra 3

RESULTSAND DISCUSSION

n
=aad m- AN h S
im = 23i%(m- + oe1oe1ke0 1Pd KL KI(m- K- 1)’

m31

(13

(14)

(15

(16)

17)

(18)

(19)

(20)

There are 3 methods used in this paper to solve the LU system, which are ADM, MADM and the well-
established RK4 as the reference. The MADM algorithm discussed is coded in the computer algebra package Maple
together with the Maple built-in fourth-order Runge-Kutta. The Maple environment variable Digits controlling the
number of significant digits is set to 16 in all calculations done in this paper. In this paper, the system (1)-(3) is
chaotic for the parameter a = 36, b = 3 and ¢ = 20 the initial conditions are x(0) =1, y(0) = 2 and z(0) = 6. The
simulation done in this paper is between t = 0 to 5. The solutions for 15-terms ADM on LU system are obtained as

following:

X =-1.0 + 108.0t-1116.000000 t + 14904.00000 t>"99663.00000 t* + 633329.4000 t°
-2953565.400 t° + 12353885.16 t7-57191750.94 t® + 348616602.2 t%3132645470 t 1°
+ 27260231260 t11224688814200 t12 + 1637561100000 t*310722147350000 t*4

y =2.0+46.00t + 1260000000 t* + 3830.333333 t>-11700.58333 t* + 141068.5000 t°
-551421.0639 t°-355392.8282 t + 2996239958 t2521562694.8 t° + 5196869637 t1°
-47636040140 t** + 366652694300 t12-2532162870000 t 2 + 15044012470000 t*4

7=16.0-20.00t + 1150000000 t> + 755.000000 t>-3503.833332 t* + 156306.0167 t°
-1264706.125 t° + 14342080.01 t"-105862688.4 t° + 7378808882 t°-3943767312 t1°
+12755709360 t*1 + 38293419600 t2"1278826847000 t** + 15286095180000 t4
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Table 1: Determination of accuracy of RK4 for Chaotic Lu system

D = |RK40.01-RK 40 001

t Dx Dy Dz
0.5 0.0014340 0.001185 0.0003733
1.0 0.0009131 0.001317 0.0016940
15 0.0035760 0.003748 0.0007725
2.0 0.0010330 0.004104 0.0142100
2.5 0.0212000 0.017110 0.0182000
3.0 0.0313200 0.025750 0.0050150
3.5 0.0189000 0.022650 0.0036750
4.0 0.2626000 0.167600 0.1903000
4.5 0.1756000 0.285300 0.0939600
5.0 1.1660000 0.635400 2.5710000

D = |RK40.001-RK 40,0001
t Dx Dy Dz
0.5 1.005E-07 7.881E-08 4.693E-09
1.0 3.371E-08 6.750E-08 1.256E-07
15 2.338E-07 2.362E-07 1.797E-08
2.0 1.034E-07 2.283E-07 8.886E-07
2.5 1.300E-06 1.048E-06 1.121E-06
3.0 1.941E-06 1.589E-06 3.214E-07
3.5 1.146E-06 1.376E-06 2.293E-07
4.0 1.563E-05 9.836E-06 1.147E-05
4.5 1.094E-05 1.735E-05 5.097E-06
5.0 5.726E-05 1.724E-05 0.0001507
Table 2: Differences between 15-terms ADM and 15-terms MADM with RK4 solutions

D= |ADM-RK40,001|
t Dx Dy Dz
0.5 4,986E-08 6.795E-08 7.897E-08
1.0 9.285E-12 1.284E-13 1.406E-13
1.5 2.838E-15 3.943E-15 4.219E-15
2.0 1.631E-17 2.271E-17 2.402E-17
2.5 3.763E-18 5.248E-18 5.506E-18
3.0 4.879E-19 6.810E-19 7.110E-19
3.5 4.252E-20 5.940E-20 6.178E-20
4.0 2.772E-21 3.874E-21 4.018E-21
4.5 1.448E-22 2.024E-22 2.095E-22
5.0 6.350E-22 8.882E-22 9.175E-22

D = [MADM-RK 4o go1|
t Dx Dy Dz
0.5 1.005E-07 7.882E-08 4.693E-09
1.0 3.371E-08 6.751E-08 1.256E-07
15 2.338E-07 2.362E-07 1.797E-08
2.0 1.034E-07 2.283E-07 8.887E-07
2.5 1.301E-06 1.048E-06 1.121E-06
3.0 1.941E-06 1.589E-06 3.214E-07
3.5 1.146E-06 1.377E-06 2.293E-07
4.0 1.564E-05 9.837E-06 1.147E-05
4.5 1.094E-05 1.735E-05 5.098E-06
5.0 5.727E-05 1.725E-05 0.0001507
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Fig. 1: Phase portraits of 15-term MADM
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Fig. 2: Comparing 15-term MADM with RK4 for x on Dt=0.001

10

As there is no exact solution for the chaotic system, the accuracy of the proposed method is compared to the
numerical solution by Runge-Kutta method. The step size of Dt=0.001 is chosen from the differences of the solution
of RK4 at different step size; Dt=0.01, Dt=0.001 and Dt=0.0001 as presented in Table 1. The step size of Dt=0.001 is
selected in this entire work as it gives small error and computationally costly as the time taken is reasonable In this
paper, we fix the number of terms to be 15 and step size to be Dt=0.001. The differences of solutions of ADM,
MADM and RK4 are given in Table 2. As we can see the ADM solution is far away from the Runge-K utta even at
t=1 while MADM agree with RK4 solution very well. The 15-term MADM have been illustrated into phase portraits
Xy, yz, Xz and xyz in Fig. 1. Also, the solutions of 15-term MADM for X, y and z have been plotted into graphsin
Fig. 2-4 respectively for comparing MADM with RK4.
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Fig. 3: Comparing 15-term MADM with RK4 for y on Dt=0.001
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Fig. 4: Comparing 15-term MADM with RK4 for z on Dt=0.001
CONCLUSION

The chaotic LU system is solved accurately by MADM. The method has the advantage of giving an analytical
form of the solution within each time interval which is not possible in purely numerical techniques like RK4. The
present technique offers an explicit time-marching algorithm that works accurately over such a bigger time step than
the RK4. The results presented in this paper suggest that MADM is also readily applicable to the chaotic systems

involving more complex dynamical behaviours.
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