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Abstract: We consider simple version of the Blume-Emery-Griffiths model on the Cayley tree and 
investigate the problem of phase transition using the exact recursion equations for the Cayley tree of second 
order, so that every spin has three nearest neighbours. These equations are studied analytical-ly for D>0 
and J>0. It is proved that one can reach phase transition if the reduced crystal-field interaction D/J≤2. It is 
found the exact value for the critical temperature Tc = (ln(2+√3))-1J/kB and described the region RA of phase 
transition. On the other hand it is described the phase transition region RN for considered model using 
numerical methods, namely, we consider three limiting Gibbs measures with different boundary conditions 
and if at least two of them are different then we have phase transition. It is compared the phase transition 
regions RA and RA.  
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INTRODUCTION 
 
 As expanded Ising model, the Blume-Emery-Griffiths (BEG) model, which is characterized by bilinear and 
biquadratic exchange interactions and crystal-field interaction, has played important role in the development of the 
theory of tricritical phenomena. This model was originally proposed to explain the phase separation and 
superfluidity in 3He-4He mixtures [1] and has been studied by a variety of techniques, e.g., the generalized Bethe-
Peierls approximation [2,3], the effective-field theory [1,2], the exact recursion relations method [4] and so on. A 
phase diagram of the simple version of the BEG model was studied by de Oliveira and Salinas in [2]. Recently T. 
Morais  and  A.  Procacci  [5]  have  proved the absence of phase transitions in the BEG model on integer lattice Zd, 
d≥2. In this paper using the exact recursion relations method we show the existence of phase transitions in the 
simple version of the BEG model [2] on the Cayley tree of second order and describe phase transition region.  
 

MODEL 
 
 The model considered consists of spins {-1,0,1} on a semi-infinite Cayley tree Γ2 = (V,L) of second order, i.e., 
an infinite graph without cycles with 3 edges issuing from each vertex except for x0, so-called a root of the tree, 
which has only 2 edges, where V is the set of vertices and L is the set of edges. Two vertices x and y in V are called 
nearest-neighbors if there exists an edge l∈L connecting them, which is denoted by l = < x; y >. The distance d(x; 
y); x; y ∈V, on the Cayley tree Γ2, is the number of edges in the shortest path from x to y. For a fixed x0∈ V we set 
 

Wn = {x∈V| d(x; x0) = n}; Vn ={x∈V| d(x; x0) ≤ n} 
 
and Ln denotes the set of edges in Vn. The fixed vertex x0 is called the 0-th level and the vertices in Wn are called the 
n-th level. The Hamiltonian of the Blume-Emery-Griffiths (BEG) model on the Cayley tree is defined by  
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where σ(x)∈{-1,0,1} is the spin at site x∈V, the first and the second summation runs over all nearest-neighbours 
pairs and third summation runs over all the sites. Here J,K and D describe the bilinear exchange, biquadratic 
interactions  and  crystal-field interaction respectively. Below we will consider simple version of BEG model when 
K = 0 [2]. 
 

RECURRENCE EQUATIONS 
 
 There are several approaches to derive equation or system equations describing limiting Gibbs measures for 
lattice models on Cayley tree [3], [6]. One approach is based on recursive equations for partition functions. Let Λ be 
a finite subset of V. We will denote by s (Λ) the restriction of a configuration s to Λ. Let ω(V\Λ) be a fixed 
configuration. The total energy of configuration s (Λ) under boundary condition ω(V\Λ) is defined as 
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Then partition function in volume Λ under fixed configuration is defined as 
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where Ω(Λ) is the set of all configurations in volume Λ and β = 1/kBT is the inverse temperature, where kB is the 
Boltzman constant. Then conditional Gibbs measure µΛ of a configuration σ(Λ) is defined as 
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 Let if Λ = Vn, a configuration, partition function and conditional Gibbs measure in volume Vn denote as σn, Z(n) 
and µn respectively. Let Zi

(n) be the partial partition functions with the spin i in the root x0, i = -1,0,1, i.e., 
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 In order to produce the recurrent equations we consider the relation of the partition function on Vn+1 to the 
partition function on subsets of Vn. Simple algebra gives  
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where a = exp(ßJ) and c = exp(-ßD). It is evident from (4) that 
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Let un = Z-1

(n) / Z0
(n) and vn = Z1

(n) /Z0
(n). Then from (5) one can produce the following system of recurrent equations 
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If u = limn→8 un and v = limn→8 vn, then these equations are reduced to following system of nonlinear equations 
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 The solutions of this system (8) describe translation-invariant Gibbs measures (see [6]) and if for some fixed 
values of parameters a and c the system (8) has more than one solution then phase transition is occurred.  
 

PHASE TRANSITION REGION 
 
In this section we describe solutions of the system of nonlinear equations (8): 
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Subtracting these equations, we have 
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So that the equality u=v give us some solutions. In this case one of these equations one can rewrite as  
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Since a + a-1 > 2 for any a, the function f(u) is increasing for u > 0 and there exists single inflection point  
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 If a + a-1 < 6, then uinf <0 and for all u>0 we have f’>0 and f’ ’>0, i.e., the function f(u) is increasing and convex, 
such that the equation (10) has a single root.  
 
Lemma 1: Let a + a-1 > 6. Then there exist η1(a), η2(a) with 0<η1(a)< η2(a) such that the equation (10) has three 
solutions if  
 
                                                                  η1(a) < c-1 < η2(a) (11) 
 
has two solutions if either c-1= η1(a) or c-1= η2(a) and has single solution for other cases. In fact, 
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* are the solutions of the equation  
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                                                                      uf’  = f(u) (12) 
 
Proof: Let a + a-1 > 6. Then uinf > 0, f’>0 and f’ ’>0 for 0< u < uinf and f’ ’  <0 for u > uinf. The equation (12) is 
equivalent to  
 
                                                        1 2 12(a a )u (a a 6)u 1 0− −+ − + − + =  (13) 
 
 That has two positive roots if a + a-1 > 18 and single root if a + a-1 =18. Using simple calculus one can show that 
if a + a-1 > 18 and η1(a) < c-1 < η2(a) then the equation (10) has three positive roots  
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where first and third roots are stable and second one unstable. 
Now let us come back to equation (9). After cancelling by (u-v) we have 
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where t = u+v. Using simple calculus one can show this equation has a single positive root if c > c1 does not have 
positive root if c < c* and has two positive roots if c* < c < c1, where 
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 Below we describe region in the plane (kBT/J; D/J) where phase transition is occurred. For brevity assume x = 
kBT/J and z = D/J. Then a = exp(1/x) and c = exp(-(1/x)z). In the case u = v the double inequality (11) one can 
rewrite as follows 
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Then solving the equation (13) we have 
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 Note that the functions F1(x) and F2(x) are defined on the segment [-ln(9+v80))-1, ln(9+v80))-1], where 
ln(9+v80))-1˜ 0.3463. Then a region bounded by curves xF1(x) and xF2(x) is a phase transition region for BEG 
model when u = v (Fig. 1).  
 For second case with u≠v, simple but tedious analysis gives that the system of equations (7) has more than one 
solution if J > 0, a+a -1 > 4 and 
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Fig. 1: Phase transition region for BEG model with u = v 
 

 
 
Fig. 2: Phase transition region RA for simple version of BEG model 
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with x∈[0, (ln(2+√3))-1]. Then a region RA,defined by these double inequalities, is a phase region for BEG model 
with K=0 (Fig. 2). One can see that phase transition region in Fig. 2 contains phase transition region in Fig. 1, 
considered in first quadrant. Thus the phase transition region of BEG model described analytically coincides with 
region in Fig. 2. 
Corollary The critical temperature is equal to Tc = = (ln(2+√3))-1J/kB and for T < Tc we can reach phase transition. 
 

NUMERICAL DESCRIPTION OF PHASE TRANSITION REGION 
 
 In this section we plot phase transition region for BEG model using numerical method. Let ωi be a boundary 
configuration such that ωi(x)=i for any x∈V\Vn, where i = -1,0,1. For brevity we put Z(n)(i) = Z(n)( ωi), i=-1,0,1. 
Firstly we compute  
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for three different boundary configurations  
 

ω0(x)= -1; ω0(x)=0 and ω0(x)=1 
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Fig. 3: Phase transition region RN described by numerical method 
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Now using recurrence equations (5) one can compute Z(n)(i) for any n and respectively compute  
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with i, m = -1,0,1. Then µ(-1), µ(0) and µ(+1) are three limiting Gibbs measures with plus, zero and minus boundary 
conditions respectively and for each of them we compute measure of the cylinder set {σ: σ(x0)=i}. If for some i at 
least two of them different then for given a and c we have phase transition. On the plane (kBT/J;D/J) consider a 
square 0 < kBT/J = 3; 0 < D/J =3 with network (0.05p;0.05q), where p, q= 1,…,60. If kBT/J=0.05p and D/J=0.05q, 
then a = exp(1/0.05p) and c = exp(-q/p). If for these parameters a and c we reach phase transition, a point 
(0.05p;0.05q) is coloured to blue colour, in opposite case - not. The Fig. 3 represents final result for all points point 
(0.05p;0.05q), where p, q=1,2,..,60.  
One can see that for cylinder sets  
 

{σ: σ(x0)=1} and {σ: σ(x0)=-1} 
 
the phase transition (blue) regions are the same but for cylinder set {σ: σ(x0)=0} the phase transition region 
essentially differ from previous ones. As the final result we can state that the blue region in part a) or c) is the phase 
transition region described numerically.  
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CONCLUSION 

 
 In this paper we describe phase transition regions RA and RN using analytic and numerical methods respectively. 
One can see that RA is a subset of RN since above we could describe part of solutions the equations (8) only. Note 
that for both cases maximal value of D/J is equal to 2 and this fact allow us to state that from detail analysis of 
equations (8) we will have RA = RN, i.e., analytical and numerical methods will give the same result and in this case 
Tc = (ln(2+√3))-1J/kB. 
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