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Abstract: In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems.
Furthermore, analogous dominant and maximal inequalities for weighted martingale ergodic sequences and

weighted ergodic martingale averages are al so obtained.
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INTRODUCTION

General theories unifying ergodic averages and martingales were reported by Kachurovskii [1-3]. Four different
variants for theories unifying ergodic averages and martingales have been reported in [4-7]. Besides, one parameter
weighted ergodic theorem and multiparameter weighted ergodic theorems have been investigated by Baxter J.H.
Olsen [8] and R.L. Jones, J.H. Olsen [9], respectively. In [10], M. Lin and M. Weber considered weighted ergodic
theorems and strong laws of large numbers. General ergodic theory isreported in[11].

In this paper we prove weighted martingale-ergodic and weighted ergodic-martingale theorems. Furthermore,
analogous dominant and maximal inequalities for weighted martingale ergodic sequences and weighted ergodic
martingal e averages are al so obtained.

Preliminaries: Let W,S||) be a space with a finite measure, lyg = Lo(W) be a space of complex measurable
functionson'W,

Lo=f{f eLg:ly| fIFdl <
p3 1, with the norm
Fi=( [ 17raz)
if IEP<¥, | Fl.=sup [ |flwiwen)ifp=¥.
Let {+1,}i-, be a monotone sequence of s-subalgebras of S, -4, 14 (or 4,441 E L,®L, be the

expectation operator, T: L,® L, be the Dunford-Schwartz operator. Put

5.0f.T) — iﬂ':;T";’-_r" ity 5 (F T ES = E(F oA
In[1] itisproved the following
Theorem1.1
1) Let}T Ly, pl [1L¥). ThenE (s, (f.T1|4,) — £ inLp, inthiscase i £ 1< £ 1,
2 Letl Ly, pl (L¥). Then
E(5.(F. T)eAL ) — £ inLy,.
3 Let!T Ly, supyay (5,0F.T1 €L, TheNE(5,(f. T)1e4. 71— 7= inLo.
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Put £, = E(flA .0 Soif. T) = SFI2iT9 f, £2 = lim

o i IIm,. I
[N S S Mz =

e T).

Theorem 1.2: [2]
1) Let!T Ly, pl [L¥). Thens, (E(f|4,0.T) = £ inL, asn® ¥,
2 Let!1 Ly, pl (L¥). Then

Sp(E(FIADT) = £ in L.

3) Letl Ly, sup |E(F14,3 L. Thens (£(f|-4.3.7) — = inLo.

r1i

Lemmal:[2,12] Let{} }1 Ly, pl [1L¥) and £, — " inLy, asn® ¥. Then £(f, |4, ) — E(f "4} inL,asn® ¥.
Lemma2:[2, 12] Lets, — 7~ asn® ¥ and sup,... | £ | = L. Then

E(f 14— ECF 141N Lo

Lemma3: [11] Let £, — 7~ asn® ¥ and sup, . | £, € L. TheN 5, (. T) — 7° inLo asn® ¥ where £* = lim,, 5, (£, T).

Definition 1.3: The sequence numbers a(k) is called Besicovich sequences such that given e>0, there is a
trigonometric polynomia y (k) such that lim,, ... sup, ST le () — ¢ (R)| <

]

A sequence a(k) is called bounded Besicovich if {a(k)}l 1™ In [9] it was proved the following

Theorem 1.4: Let T be denoted the Dunford-Schwartz operator. Then there exists

lT:

'."-'.—I

ae for every !1 Lp, 1<p<¥ and al bounded Besicovich sequences a(k). In this case, if T(1¥), then
A.(F.T) = 2Tizia (:)T¥(r) (0) -convergesin Ly and if p= 1, then Aq(} , T) (0)-convergesin Lo.
In this paper we prove theorems analogousto 1.1 and 1.2 in the case of weighted averages.

WEIGHTED MARTINGALE-ERGODIC THEOREMS

Let {«1,}5-: be a monotone sequence of s-subalgebrasof S, «4. T:4_ (or 1, 1:4_). (k) be a Besicovich
bounded sequence, T: L,® L, be the Dunford-Schwartz operator. We put,
An(f.T)==XEta (R)T5(F). f* = limg._ A, (F.T). 5 = E(F|A ).
Theorem 2.1
1) Let!T Ly pl [1¥). Then £ (4, (r. 7)1, — £ inLp.
2) If!7 Ly andsup,.. 4, (F.T) = L. then 74, (7. T)1+4,.)— £~ in L.

Pr oof
1) Since

where b = sup |z k}]. by the Akcoglu’stheorem we have sug,, .. |4, (F.T}| € L,.
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According to Theorem 1.2 [9], 4.(f.T) — 7*. Therefore Lemma 2 implies (4, (f. 71141 — E(F* |41 = £~ in Lo
asn® ¥.
Let sup,.: |A.(F.T) =k Then E(4,(F.T)lA.1= E(hl:A,] for al n. By Theorem 2 [13] sup,,, & (k|40 & L.

Hence, sup,.., | E{A.(f. T1l=4,1| = L. Therefore E(4. (f. T) :-Er_|i_.ﬁ: inLp.

wvTRA

2) By Theorem 14 [9] we have A4.(fT)—=7 ae AS sup,,. A.(fTi=i,, by Lemma 2 we obtain
E(4,(f.T14,)— £2 ae. Since the convergence a.e. is the (0)-convergence in Lo, we obtain z¢a, (7. 71124, 1 — £
inLo.

WEIGHTED ERGODIC-MARTINGALE THEOREM

Let, asin Section 2, {-4,1:., be a monotone sequence of s-subalgebrasof S, .4, 14 (or -4, LA La(k) bea
Besicovich bounded sequence, T: L,® L, isthe Dunford-Schwartz operator. We put

Lemma3.l: Let g, = Foh=sup, | fil el andf =lim,_ 4, (7). Then 4, (.71 = 7" inLo.
Proof: Let i, = supe.s | £ — £l
Obviously,

AT = F1 £ 18 (fn TY = A (F. T + |4a(f. T = F°

By theorems 1.2 and 1.4 [9], 4,(£.T) — f asn® ¥ in Ly. Wewill prove that

ALfT)—AFT)—0asn® ¥ inLo.

Itisclear,
1+
A(E.T A F. T = 1A(f F.T 5’—} alkWTI*(E )=
: na
b-— ) ITE(E FDZb-5.0£ FLIT
T el
=0

Since | — f1 —0 and sup, | £, — | = 2k e L,, we obtained from Lemma 3, that 5.(|f, — f1.|T|) — 0 as n® ¥.
Therefore 4, (.. T) — 4.(£.T) — 0 and #= 0= T) = inL,,
Theorem 3.2
1) LetT (1¥). Thens (E(f1A4.).T) — £~ inL, asn® ¥.

2) Letp=landsup, 1E(fl-4.) =hel,. Then A (E(fl4.1.T] = f2in L.

Pr oof
1) According to Theorem 2 [13], sup, .,

1f11#4.) € L,. Therefore by Lemma 3.1, we have 4 _(£(f|:4.1.T71 — [

3]

in Lo.
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FlleAr= hand A, (E(F 14,0 T = 4, (k. T13. As by the Akcoglu’s theorem

i
Ag(E(fleig)TH € Ly,

Let sup,.y E(fll=25)=h. Then E
T £ L, and sup,, ;4 f

I} € L, wehave sup, s 4. (E

J.__|

SUPpzs An (7 AF AL T

AT — F.

Hence, 4. (E(f-

By the Theorem 3[13], we have

2
EiflA. ) = E(f.AL)
inLo. AS=up, . | E(fl+4,1= L, by Lemma3.1 we obtain
Ap (ECFIAp)T) — f2

in Lo.
WEIGHTED DOMINANT AND MAXIMAL INEQUALITIES

4_.Thenfor!l L, the following inequality holds:

Theorem 4.1: Let pi (1,¥) and 4.

sup |E(A (F.T)«A) I = bg= N F I
where b = supgja(K)|.
Proof: Let g = sup,.; | 4. (. T1. Then
AT = g suppay | E(An(F.T)|-Ap)| = 5uPna: B (g]40)
and therefore
SUPpoq |E(Ag OF. T)eTq ) N =N supy .y E(g|cTa)

By the dominant inequality for submartingale [12] we have
1200, =g IE{g|eds) I,

| sup E (el N

Since the conditional expectation operator is contracting in L, we obtain, that

E(gleA) I, <lg 0,
Therefore
| sup E(A-(f. T)|eA ] l:, = g Il sup | A, (f I,
It follows from Akcoglu's theorem that 1 sup,... |4,(7.7) I, < 5-q 1 7 1. Thus, for | L the inequality
| sup | E(An (F. T)eA ) ;I_Edﬁ': fl,
holds.
Theorem 4.2: Let|T L, pl (1¥) and %, ! +7... Then for any e>0 the following inequality holds
A} 2} =— - BF-1F 1

where b = supgla (k).

Proof: Let g = sup,., | 4,07.TJ. Then
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- -y e - . - T s Edfml d % el
Alsup |E(Au (. T)|Ax) =) = A[sup E(g|-A,) = £]

By the maximal inequality for for submartingale £z -4, 1 [12] we have, that

E(gleA,) 17 =0 g 0} =0 supnos | A (F.TOIE <0 supgaq A ()T IE
Now applying theinequality n sup,. .. A. (|f|. 1T} I, =b-g I f I,_, wehave
Afsup | E(Ag (. T)Ap)] 22} < =5 - -1 £ IE.

The following theorems can be proved analogously to theorems 4.1 and 4.2.

Theorem 4.3: Let pi (1¥). Thenfor |1 L, the following inequality holds

W

up | A (E(FlA 0T N = b-g~ I f

i
-

where b = supgla (k)|.
Theorem 4.4: Let pl (1¥). Then for any e>0 and | T L, the following inequality holds

Alsup | Ay (E(fle1) T) Ziczi—v::r-q" Fiy

where b = supgja(K)|..
MULTIPARAMETER WEIGHTED MARTINGALE ERGODIC THEOREMS

In this section we define the ddimensional case of martingale ergodic averages and consider convergence
theorems for such averages.
Let (a(x1:k = Z7) be the class of weights and

For N = (N1, Na,..., Ng) N® ¥ meansthat Ni® ¥ foranyi=12,...,d.

Definition 5.1: [9] The sequence (={k}:k =27} is called rBesicovich if for every e>0 there is a sequence of
trigonometric polynomialsin d variables, y k), such that limm y _.. sup = T¥ k) — g (k)| <&

This class 5 denoted by B(r). The sequence a(k) is called rbounded Besicovitch if [aiki] = B(rini=. If
(a(ky} = B(1in = then{a(k)} iscalled abounded Besicovich sequence.
Let Ty, Ta,..., Tg denote afamily of d linear operatorsin L. We consider averages

Ay(TIf = £

— a (KT F,
Nt
wheref e L, T% =7 7% . T

o

In[9] itisproved the following
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Theorem 5.2: Let T = (T4, Tp,..., Ty) denoted d Dunford-Schwartz operators. Then An(T); converges a.e. for every
] Ly, 1<p£¥ and all bounded Besicovich sequencesa(k).
Let, as in the Section 2 [.4.1:_, be a monotone sequence of s-subalgebras of S and -7, ! :4.. We put

£ = limy_ Ay (T 2 = E(F 1AL

Theorem 5.3: Let} T Ly, 1<p£¥, a(k) be abounded Besicovich sequence, N, = (N7 N F..... ) — = asn® ¥. Then

inLp.
The proof of Theorem 5.3 is analogous to the proof of Theorem 2.1 1).

Theorem 54: Let .4,1.4.. |TL, 1<pE¥, a(k) bounded Besicovich sequence, b = supja(k)|,
N, = (WLNL....Nh — = asI®¥. Then
1) 0 sup; | EQAy, (TIFIA] 1p= b-q® ™ I F I

2) Alsup; | E(Ay, (T)f|eA))| Z e} =b-g"* —

E{Ax, (T)f|:2:)] < E(sup | A, (T3] = E{ g7 =7
and
sup | E(Ay, (T)f 2] = sup E (g |4
@

Therefore

sup | E(Ax, (T Il Up =0 sup E (g [1:) 0.
By the dominant inequality,

sup E (g1 ) oz g DE(g:-1.) 1I;
Since the conditional expatiation operatorsis contracting in L,, we have
He R0 =16 @
Thus
sup; | E(Ay, (T)f|eA p=gllg b=
=qlsupdy, M Nzq-q%-b1FN,=
=b-g®tUf,
2) By theinequality (1) we have
[sup; | E(Ay, TF1A0] = =) <A{sup; E (g |-2;) = £}

According to the maximal inequality

isup E (gileA) = 2} £ — 1 E(g|4;) IS
Applying inequality (2), we obtain

= I E(g|A) 1= = 1 gy 3= — I supAy_(TIf] 13
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Sincel sup, Ay (Tif| 152 b7 g% 1 F 1., we obtain
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