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Entropy-Based Algorithm to Detect Life Threatening Cardiac
Arrhythmias Using Raw Electrocardiogram Signals
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Abstract: Ventricular tachycardia or fibrillation (VT-VF) as fatal cardiac arrhythmia is the major cause leading
to sudden cardiac death. It is crucial for the patient to receive immediate medical intervention when either VT
or VF occurs. The aim of this study is to investigate the possibility of predicting ventricular arrhythmia from
electrocardiogram (ECG) signals. We use symbolic dynamics together with an entropy based complexity
measure to discriminate between normal sinus rhythm (NSR) and life threatening arrhythmias like, ventricular
tachycardia/fibrillation (VT/VF). The statistical analyses show that either, Renyi or Shannon Entropy measure
is found to have potential in discriminating normal and VT/VF subjects and thus can significantly add to the
prognostic value of traditional cardiac analysis. However, it is found that Renyi entropy outperforms Shannon
entropy. The receiver operating characteristic curve (ROC) analysis confirms the robustness of this new
approach and exhibits an average sensitivity of about 91.8% (94.9%), specificity of about 95.4% (97.5%),
positive predictivity of around 96.1% (95.6%) and accuracy of about 93.4% (96.6%), with Renyi entropy to
distinguish between normal and VT (VF) subjects. The presented method is simple, but with high detection
quality, computationally fast and well suited for real time implementation in automated external or implantable
cardioverter-defibrillators.

Key words: Complexity measures  Electrocardiogram  Renyi entropy  Shannon Entropy  Symbolic
dynamics  Ventricular tachycardia  Ventricular fibrillation

INTRODUCTION with a radial basis kernel to predict ventricular arrhythmia

Ventricular  tachycardia   (VT)   and   ventricular spectrum of beat-to-beat intervals were tried as input
fibrillation (VF) are life threatening cardiac arrhythmias [1]. vectors to a neural network. Though the approach is said
Despite numerous recent advances in the field of to lead to more accurate risk stratification, no details of
medicine, Ventricular tachycardia/ fibrillation (VT/VF) has accuracy and other measures are available.
been difficult to manage with in clinical practice and Besides manual defibrillation by an emergency
mortality rate has remained high. It is crucial for the paramedic in the recent years, bystander defibrillation
patient to   receive   immediate  medical  intervention with automated external defibrillators (AEDs) has also
when either VF or VT occurs. As a consequence the been recommended for resuscitation. A reliable automated
development of new noninvasive methods and measures classification system combined with computationally fast
of mortality risk in VT/VF, including sudden  cardiac real time implementable algorithm can resolve this issue.
death, is still a major challenge. For this reason, a number This work is an attempt to develop such an automated
of quantitative analysis techniques for ECG arrhythmia computationally fast system to discriminate between
detection have been proposed [1-3]. Sequential normal and Ventricular tachycardia/ fibrillation subjects.
hypothesis testing of binary sequences has been  Physiological data more often show complex structures
employed to detect ventricular fibrillation [4]. Though the which can not be quantified or interpreted using linear
method shows an improvement over previous methods, methods. The classical nonlinear methods suffer from the
the accuracy is not high enough for clinical applications. disadvantage of dimensionality. Further, there are not
Gustavo Santos used regularized least squares technique enough samples in the time series to arrive at a reasonable

[5]. Power spectrum of raw ECG signals and power
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estimate of the nonlinear measures. From this point of of the symbolic sequences to classify ECG signals
view it is advisable to resort to methods which can obtained from standard Holter recordings from PhysioNet
quantify system dynamics even for short time series, like database [18] into normal and VT/VF subjects. Static
the symbolic dynamics. The prime advantages of transformation with multiple partitions preserves more
symbolic dynamics are the following: If the fluctuations of information and is preferred when the time series, like
the two data series are governed by different dynamics ECG, is nonstationary. The rationale behind the
then the evolution of the symbolic sequences is not application of Renyi entropy and Shannon entropy
related. The resulting symbolic sequences histograms complexity is that it is suitable for short-term segments of
give a reconstruction of their respective histories and the ECG signal. Receiver operating characteristic (ROC)
provide a visual representation of the dynamic patterns. plots were used to evaluate the ability of the complexity
In addition, they may be used as a basis to build statistics measures to discriminate  normal  from  VT/VF  subjects.
to compare the regions that show different dynamical It is found that Renyi Entropy yielded excellent results
properties and indicate which patterns are predominant. better than those with Shannon entropy, with an average
Thus methods of symbolic dynamics are useful sensitivity of about 91.8% (94.9%), specificity of about
approaches for classifying the underlying dynamics of a 95.4% (97.5%), positive predictivity of around 96.1%
time series. Parameters of time domain and frequency (95.6%) and accuracy of about 93.4% (96.6%), with Renyi
domain often leave these dynamics out of consideration. entropy to distinguish between normal and VT (VF)
Besides computational efficiency, symbolic methods are subjects. The presented method is simple,
also robust when noise is present. The process of computationally fast, has high detection quality and
symbolization can be used to represent any possible hence, is well suited for real time implementation in
variation over time, depending on the number of symbols automated external or implantable cardioverter-
and the sequence lengths used. This is a very powerful defibrillators.
property because it does not make any assumptions
about the nature of the signals/ patterns (e.g., it works METHODS AND MATERIALS
equally well for both linear and nonlinear phenomena).

Symbolic time series analysis has found application ECG Records: All the ECG records used are from the
for the past few decades in the field of complexity benchmark PhysioNet databases [18]. The work involved
analysis, including astrophysics, geomagnetism, 18 ECG records from normal sinus rhythm (NSR) database
geophysics, classical mechanics, chemistry, medicine and (nsrdb) and ECG records of 35 subjects who experienced
biology, mechanical systems, fluid flow, plasma physics, episodes of sustained ventricular tachycardia, ventricular
robotics, communication and linguistics [6]. To be flutter and ventricular fibrillation (VT/VF) from Creighton
specific, in medicine, various implementations of symbolic University ventricular tachyarrhythmia database (cudb).
sequences have been used to characterize The NSR database includes 5 men, aged 26 to 45 years
encephalography (EEG) signals to understand the and 13 women, aged 20 to 50 years. The age and gender
interaction between brain structures during seizures [7]. of subjects in VT/VF database are not available. For sake
Under mechanical systems, symbolic methods were of  comparison   and   validation,   the   NSR   database
applied to combustion data from internal combustion was divided into two groups, first with 9 ECG records
engines to study the onset of combustion instabilities [8] (Normal-1)  and  second, also, with 9 ECG records
and in multiphase flow data-symbolization were found to (Normal-2). Likewise, the VT/VF database was divided
be useful in characterizing and monitoring fluidized-bed into two groups, first with 15 ECG records (VT/VF-1) and
measurement signals [9]. Symbolic dynamics, as an second also with 15 ECG records (VT/VF-2). From each
approach to investigate complex systems, has found record the modified limb lead II was only considered for
profound use in the analysis of heart rate variability analysis. The resolution is 200 samples per mV for nsrdb
signals [10-14]. There are many ways symbolic dynamics and 400 samples per mV for cudb. The sampling frequency
can be used for analysis of time series and all of them of normal sinus rhythm signal from NSR is 128 Hz and that
require coding i.e. converting the time series into symbolic of VT/VF signal from cudb is 250 Hz. Since the sampling
series. The differences in symbolic methods are usually in frequency does influence upon the calculated indices it is
their coding procedure or used complexity indices. In this necessary to have the same sampling frequency for all the
contribution we employ static transformation with multiple records. For this reason ECG signals from NSR database
partitions [6] as the symbolic method and Renyi entropy are first re-sampled at 250 Hz. Then each record is divided
and Shannon Entropy [15-17] as measures of complexity into segments of equal time duration (14 sec), with 3500
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samples/ segment in both normal sinus rhythm and VT/VF {x (i), i=1,2, …N} of integer values ranging from 0 to  -1.
database. A total of 1000 segments from normal sinus Then this series is transformed into a new series, x =
rhythm  and  from VT/VF data base, each, are analyzed. {x (i), i=1,2, …N}, depending on a sequence of patterns
All the records are normalized before analysis. Also all the of L delayed samples, where, x (i) = { x (i), x (i-1), x (i-2), …
signals from both database are filtered using an 8-point x (i-L+1)}. The number of possible x (i) is .
moving average filter to remove high-frequency noise.

Symbolic Dynamics
Static Transformation and Dynamic Transformation:
Symbolic dynamics, as an approach to investigate (1)
complex systems, facilitates the analysis of dynamic
aspects of the signal of interest. The concept of symbolic
dynamics is based on a coarse-graining of the dynamics
[5]. That is the range of original observations or the range
of some transform of the original observations such as the There are several quantities that properly characterize
first difference between the consecutive values, is such symbol strings. In this work we primarily investigate
partitioned into a finite number of regions and each region the average frequency distribution (relative frequencies)
is associated with a specific symbolic value so that each of  each   of  the  patterns/  symbols  from  the  alphabet
observation or the difference between successive values {0, 1, 2, 3, 4, 5} for all the signal segments of each class,
is uniquely mapped to a particular symbol depending on plot the symbol histogram and perform pattern
the region into which it falls. The former mapping is called classification.
static transformation and the latter dynamic
transformation. Thus the original observations are Shannon Entropy and Renyi Entropy Complexity
transformed into a series of same length but the elements Measures: Claude Shannon defined entropy as a measure
are only a few different symbols (letters from the same of uncertainty  associated   with   a   random  variable.
alphabet), the transformation being termed symbolization. The Shannon entropy is a decreasing function of
A general rule of thumb is the partitions must be such that scattering of the random variable and is a maximal when all
the individual occurrence of each symbol is equiprobable the outcomes are equally probable. It is a measure that
with all other symbols or the measurement range covered can be used globally, on the whole data, or locally, to
by each region is equal. This is done to bring out ready evaluate the probability density distributions around
differences between random and nonrandom symbol some points. This notion of entropy can be generalized to
sequences. The transformations into symbols have to be provide additional information about importance of
chosen context dependent. For this reason, we use specific events, for example outliers or rare events.
complexity measures on the basis of such context-
dependent transformations, which have a close S = - p  log (p ) for 1  i  n (2)
connection to physiological phenomena and are relatively
easy to interpret. This way the study of dynamics Where p  is the probability of occurrence of an event or
simplifies  to  the  description  of  symbol sequences. feature value x  being an element of  the  event  (feature)
Some detailed information is lost in the process but the X that can take values {x , x , …,x }.  A  larger  value  of
coarse and robust properties of the dynamic behavior is S implies higher complexity and a smaller value implies a
preserved and can be analyzed [5]. lower complexity.

Symbol-Sequences from Static Transformation of ECG defined as
Signals: In this study, we use static transformation
approach for the symbolic dynamics [6]. For example, H  = - p  log (p ) / log (N ) for 1  i  n (3)
given the ECG signal time series x , x , x ,….x . In the static1 2 3 N

transformation, assuming uniform quantization, the full Where p  is the normalized probability of the i symbol
range of the series is spread over  = 6 symbols with a sequence and N  is the number of possible sequences
resolution of  = (x -x )/ , where, x  and x  are which are actually observed in the data. Note that themax min max min

respectively the maximum and minimum of the series, x. normalization is with respect to Shannon entropy for a
After quantization the series x becomes a new series x = completely random process (one in which all sequences
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are equiprobable). The advantage of this normalization is highest accuracy (minimal false negative and false
to bring down the bias on the statistics due to finite size positive results) is obtained. This can be determined from
of the data sets. This implies that the modified Shannon the ROC curve as the closet value to the left top point
entropy will converge to 1 as the data approaches true (corresponding to 100% sensitivity and 100% specificity).
randomness  and  for non-random data this value will be A C-statistic value of 0.5 indicates that the test results are
0  H  1.0 and a lower H  implies more deterministic better than those obtained by chance, where as a value ofs s

structure. 1.0 indicates a perfectly sensitive and specific test.
Further, Shannon entropy implicitly assumes certain

tradeoff between contributions from main mass of the RESULTS AND DISCUSSION
distribution and the tails. In some cases there is a need to
distinguish weak signals overlapping with the much To test for significance of Renyi entropy measure and
stronger one. This problem can be remedied by using efficacy of the multiple partitioning of ECG using static
entropies that depend on the powers of the probability, as transformation, first we compare the entropy measures of
in p(x ) for 1 = i = n. Renyi entropy belongs to this the ECG data from normal and VT/VF subjects of Group-Ii i

category and is defined as and show that Renyi entropy outperforms Shannon

I  = log ( (p ) ) / (1- ) for 1 = i = n (4) another case study on normal and VT/VF subjects fromi i

 is a continuous parameter and  1. For  = 1, this from segments of 3500 samples and averaged to obtain
entropy reduces to Shannon entropy. If  is a large mean values for the entire recording period.
positive value, the measure becomes more sensitive to The sampling frequency of NSR database is 128 Hz
events that occur often, while if  is a large negative and that of VT/VF database is 250 Hz. Since the sampling
value, the measure becomes more sensitive to events that frequency does influence upon the calculated indices it is
occur seldom. In this work we have chosen  = 0.25. necessary to have the same sampling frequency for all the

Renyi entropy has a higher dynamic range than records. For this reason ECG signals from NSR database
Shannon entropy over a range of scattering conditions. are first re-sampled at 250 Hz. For sake of comparison and
Nevertheless Shannon entropy is used in a variety of validation, as mentioned earlier, the normal sinus rhythm
applications. database (NSR) was divided into two groups, first with 9

t-Tests and Receiver Operating Characteristic (ROC) (Normal-2). Likewise, the VT/VF database was divided
Analysis: Individual and pair-wise significance tests
(Student’s t-tests) are used to evaluate the statistical
differences between the Shannon Entropy values of
normal and VT/VF groups. If significant differences
between groups are found, then the ability of the non-
linear analysis method to discriminate normal from VT/VF
subjects is evaluated using receiver operating
characteristic (ROC) plots in terms of C-statistics. ROC
curves are obtained by plotting sensitivity values (which
represent the proportion of the patients with diagnosis of
VT/VF who test positive) along the y axis against the
corresponding (1-specificity) values (which represent the
proportion of the correctly identified normal subjects) for
all the available cutoff points along the x axis. Accuracy
is a related parameter that quantifies the total number of
subjects (both normal and VT/VF) precisely classified.
The area under ROC curve (AUC), also called C-statistic,
measures this discrimination, that is, the ability of the test
to correctly classify those with and without the disease
and is regarded  as  an  index  of  diagnostic  accuracy.
The optimum threshold is the cut-off point in which the

entropy. Next, we validate our approach conducting

Group-II. Both Renyi and Shannon Entropy are analyzed

ECG records (Normal-1) and second with 9 ECG records

into two groups, first with 10 ECG records (VT/VF-1) and
second also with 10 ECG records (VT/VF-2). Then each
record is divided into segments of equal  time  duration
(14 sec), with 3500 samples/ segment in both normal sinus
rhythm and VT/VF database. A total of 1000 segments
from normal sinus rhythm and from VT/VF data base,
each, are analyzed. Renyi and Shannon Entropy analysis
is applied to these segments from both the groups to
decide whether a particular segment belongs to normal, or
VT/VF group. Static transformation as given in Eq. (1) is
first applied on each segment to arrive at a symbol string
with a range of six possible symbols {0, 1, 2, 3, 4, 5} and
both Renyi and Shannon entropies are computed. This is
repeated for all the segments of all the three classes.

Figure 1 shows the characteristics of three types of
ECG signals, NSR episode, VT episode and VF episode.
All the signals are plotted with respect to same time scale
(in samples). It can be observed that the widths of the
QRS  complexes  are  different in the three signals. For
NSR the QRS width is usually in the range 0.06-0.1 sec
and  for  VT  the  QRS complex is much wider  ( > 0.1  sec).
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Fig. 1: Characteristics of three types of ECG signals. (a) NSR episode, (b) VT episode and (c) VF episode.

Fig. 2: Symbol/ pattern type histogram of (a) NSR episode, (b) VT episode and (c) VF episode.
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Fig. 3: (a) The distribution of Shannon entropy values (with static transformation) using Box-whiskers plots (with
outliers) for normal, VT and VF subjects from Group-I. (b) The distribution of Renyi entropy values (with static
transformation) using Box-whiskers plots (with outliers) for normal, VT and VF subjects from Group-I.

In VF, no QRS complexes are seen. Further, in the case of decrease in the regularity of VT/VF group compared to
NSR P waves are normal, while in the case of VT/ VF no P normal group. Of course, experimental studies are
waves are seen. Figure 2 shows averaged  symbol necessary to confirm the mechanisms behind the decrease
histograms for  NSR,  VT  and  VF  segments  of  the three in the regularity of signals in VT/VF subjects. The
classes. The relative frequency distribution of patterns for distribution of Renyi Entropy values, with static
the three cases is found to be distinctly different. transformation of ECGs, for the NSR, VT and VF groups
Comparison  among  the different distributions from (Group-I)  are  shown  using  Box-whiskers  plots in
Figure 2 reveals that for NSR subjects the descending Figure 3(b). The boxes (inter-quartile range) of normal and
order of distribution of symbols is 4, 3, 5, 0, 2 and 1. For VT/VF subjects are non-overlapping. Only the upper
VT subjects the descending order of distribution of whisker of normal and the lower whisker of VT classes
symbols is 3, 2, 4, 5, 1 and 0 and for VF case it is 2, 3, 1, 4, overlap. This plot shows that Renyi Entropy can also be
0 and 5. The distribution of Shannon Entropy values, with used to distinguish between normal and VT/VF subjects.
static transformation of ECGs, for the NSR, VT and VF The results of statistical analysis of non-paired Student’s
groups (Group-I)  are  shown  using  Box-whiskers  plots t-test for normal, VT and VF groups of Group-I are
in Figure 3(a). The boxes (inter-quartile range) of normal depicted in Table 3. All values are expressed  as  mean ±
and VT/VF subjects are non-overlapping. But, the box of Standard  Deviation  (median) [95% Confidence Interval].
VT and the upper whisker of normal classes overlap. Also, For normal subjects, we find the following Renyi Entropy
the upper whisker of normal and the lower whisker of VF (mean±S.D.): 1.4295±0.0495. For VT subjects we find the
classes overlap. This plot shows that Shannon Entropy following Renyi Entropy (mean±S.D.): 1.6222±0.0878,
can be used to distinguish between normal and VT/VF different from normal. For VF subjects we find the
subjects. The results of statistical analysis of non-paired following Renyi Entropy (mean±S.D.): 1.6542±0.0788,
Student’s t-test for normal, VT and VF groups of Group-I different from normal. These distributions show that
are depicted in Table 1. All values are expressed as Renyi Entropy is also sufficient to distinguish between
mean±Standard Deviation (median) [95% Confidence normal and VT/VF subjects. It is found that Renyi Entropy
Interval]. For normal subjects, we find the following for VT/VF group is always larger than that of the normal
Shannon Entropy (mean±S.D.): 0.4218±0.1055. For VT group. This implies a decrease in the regularity of VT/VF
subjects we find the following Shannon Entropy group compared to normal group. Of course, experimental
(mean±S.D.):0.6910±0.1406, different from normal. For VF studies are necessary to confirm the mechanisms behind
subjects we find the following Shannon Entropy the decrease in the regularity of signals in VT/VF
(mean±S.D.): 0.7748±0.1163, different from normal. These subjects.
distributions show that Shannon Entropy is sufficient to Although both, Shannon and Renyi entropy
distinguish between normal and VT/VF subjects. It is measures, perform well in separating normal from VT/VF
found that Shannon Entropy for VT/VF group is always groups, comparing paired t-test results (p-value and tstat)
larger than that of the normal group. This implies a from  Tables  2  and  4,  it  is  found   that   Renyi  entropy
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Table 1: Descriptive results of Shannon entropy analysis for Group-I. All
values are expressed as mean±SD (median) [95% CI]. (non-paired
Student’s t-test; p < 0.0001)

Subject Shannon entropy
NSR 0.4218±0.1055 (0.4425)

[0.4084 0.4352]
VT 0.6910±0.1406 (0.7235) line). It is found, comparing both the figures that, Renyi

[0.6748 0.7072]
VF 0.7748±0.1163

(0.8145)
[0.7551 0.7944]

Table 2: p-values and tstat (test statistic ) values of paired t-test for
Shannon entropy analysis of normal and VT/VF subjects from
Group-I.

Subject VT VF
NSR p= 2.0200x10 ; p= 5.0048x10 ;-89 -102

tstat= -24.5327 tstat= -30.0882

Table 3: Descriptive results of Renyi entropy analysis for Group-I. All
values are expressed as mean±SD (median) [95% CI]. (non-paired
Student’s t-test; p < 0.0001)

Subject Renyi entropy
NSR 1.4295±0.0495 (1.434)

[1.4232 1.4358]
VT 1.6222±0.0878 (1.643)

[1.6121 1.6322]
VF 1.6542±0.0788

(1.675)
[1.6409 1.6676]

Table 4: p-values and tstat (test statistic ) values of paired t-test for Renyi
entropy analysis of normal and VT/VF subjects from Group-I

Subject VT VF
NSR p= 8.6245x10 ; p= 1.4715 x10 ;-118 -116

tstat= -30.2884 tstat= -33.9877

outperforms Shannon entropy. This finding is
substantiated using ROC plots, which are  shown in
Figure 4(a), for Shannon entropy and in Figure 4(b), for
Renyi entropy, respectively, with normal and VT (shown
by solid line) and normal and VF (shown by dash-dot

entropy performs better than Shannon entropy. With
Shannon entropy, in Figure 4(a), it is found that (i) for
normal and VT separation, the area under the curve (AUC)
is 0.92553 with sensitivity = 87.7%, specificity = 93.8%,
positive predictivity = 94.5% and accuracy = 90.4% and
(ii) for normal and VF separation, the area  under  the
curve (AUC) is 0.97038 with sensitivity = 95.6%,
specificity = 97.1%, positive predictivity = 97.5% and
accuracy = 96.6%. With Renyi entropy, in Figure 4(b), it is
found that (i) for normal and VT separation, the area under
the curve (AUC) is 0.94962 with sensitivity = 91.8%,
specificity = 95.4%, positive predictivity = 96.1% and
accuracy = 93.4% and (ii) for normal and VF separation,
the area under the curve (AUC) is 0.97074 with sensitivity
= 94.9%, specificity = 97.5%, positive predictivity = 95.6%
and accuracy = 96.6%. Comparing these measures, it is
obvious that using Renyi entropy for complexity measure
has an advantage over the usual Shannon entropy.

Finally, we validate our approach conducting another
case study on normal and VT/VF subjects from Group-II.
The results of statistical analysis of non-paired Student’s
t-test for normal and VT/VF groups of Group-II are
depicted in Table. 5. All values are expressed as
mean±Standard Deviation (median) [95% Confidence
Interval].  For   normal  subjects,  we  find  the  following

Fig. 4: (a) ROC curves with Shannon entropy, for normal and VT (solid line) and normal and VF (dash-dot line). (b) ROC
curves with Renyi entropy, for normal and VT (solid line) and normal and VF (dash-dot line). The diagonal line
(dotted line) from 0,0 to 1,1 represents ROC curve that can not discriminate between normal and VT/VF from
Group-I.
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Table 5: Descriptive results of Renyi entropy analysis for Group-II. All

values are expressed as mean±SD (median) [95% CI]. (non-paired

Student’s t-test; p < 0.0001)

Subject Renyi entropy

NSR 1.4678±0.0736 (1.467)

[1.4595 1.4762]

VT 1.5896±0.0838 (1.589)

[1.5811 1.5982]

VF 1.6737±0.0767

(1.688)

[1.6621 1.6853]

Table 6: p-values and tstat (test statistic ) values of paired t-test for Renyi

entropy analysis of normal and VT/VF subjects from Group-II

Subject VT VF

NSR p= 0; p= 1.7047x10 ;-105

tstat= -19.7392 tstat= -28.7390

Renyi Entropy (mean±S.D.): 1.4678±0.0736. For VT
subjects we find the following Renyi Entropy
(mean±S.D.):1.5896±0.0838, different from normal. For VF
subjects we find the following Renyi Entropy
(mean±S.D.): 1.6737±0.0767, different from normal. The
paired t-test results (p-value and tstat) are shown in Table
6. The ROC plots for Renyi entropies are shown in Figure
5. It is found that (i) for normal and VT separation, the
area under the curve (AUC) is 0.87892 with sensitivity =
78.3%, specificity = 81.3%, positive predictivity = 83.8%
and accuracy = 79.7% and (ii) for  normal  and VF
separation, the area under the curve (AUC) is 0.94637 with
sensitivity = 93.6%, specificity = 94.7%, positive
predictivity = 96.3% and accuracy = 94.3%. The above
results again substantiate our finding that Renyi entropy
with multi-partition static transformation of ECGs
outperforms Shannon Entropy with the same static
transformation and that former is preferred to distinguish
between normal and VT/VF subjects. The difference in
accuracy and other measures of Group-II can be attributed
to age differences and differing male-to-female ratios
between groups I and II.

Figure 6 shows a synthesized ECG signal comprising
NSR, VT and VF rhythms in sequence, each 3500 samples
long, together with the corresponding Renyi entropy
variation. Two empirically found thresholds (at 1.5 and 1.3
marked by horizontal solid lines) are used for separating
NSR and VT/ VF rhythms.

The presented method is simple, computationally
efficient  and  well  suited  for  real   time  implementation
in  automated    external    or    implantable   defibrillators.

Fig. 5: ROC curves with Renyi entropy, for normal and
VT (solid line) and normal and VF (dash-dot line).
The diagonal line (dotted line) from 0,0 to 1,1
represents ROC curve that can not discriminate
between normal and VT/VF from Group-II.

Fig. 6: Variation of Renyi entropy (dotted line) for a
simulated signal (solid line) comprising NSR, VT
and VF rhythms in sequence. The two horizontal
solid lines mark the thresholds.

One limitation of the current study is the small sample
size. Although we have reported symbolic dynamics to
yield very sensitive measures based on the p-value
generated from the t-statistics, factors like high variance,
age differences and differing male-to-female ratios
between groups will have an impact on the results when
statistical analyses are carried out on small sample sizes.
Nevertheless, the results of this study provide sufficient
evidence to warrant the execution of larger studies that
can provide more statistically robust confirmation of the
application of symbolic dynamics as a reliable measure of
cardiac health.
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CONCLUSION 4. Pardey, J., 2007. Detection of Ventricular Fibrillation

We  apply  entropy  analysis on the static Sequences. Computers in Cardiology, 34: 573-576.
transformed nonstationary raw ECG time series from 5. Gustavo Santos, 2006. Towards Ventricular
normal and VT/VF subjects. The quantified Renyi
complexity measure of the resulting symbolic sequences
are  found  to  have  potential  in  discriminating  normal
and  VT/VF  subjects  and   thus    can  significantly  add
to the prognostic value of traditional cardiac analysis.
This complexity measure can easily be analyzed from the
automated external or implantable defibrillator ECG
recordings without time consuming preprocessing and
hence, are appropriate for practical applications.
Inappropriate defibrillator discharge or anti-tachycardiac
pacing remains an important clinical problem in
implantable  cardioverter-defibrillator  therapy  as they
lead to unnecessary pain and sometimes proarrhythmic
effects. As an implication in real time applications the
value for specificity is more important than the value for
sensitivity and with this approach average specificity
(about 97.0%) is a little more than sensitivity (about
94.0%). The usual nonlinear methods applied to time
series (other than symbolic dynamics) usually demand
long-term series, at times of 24 hours length. Using long-
term record for this kind of analysis is not amenable.
Although the ECG data we use contains both 30 minutes
and 20 hours duration records, our method tests short-
term segments, of the order of 14 sec duration. Hence the
method is well suited for real time implementation in
automated external or implantable cardioverter-
defibrillators.
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