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INTRODUCTION 

 
 Regression analysis is a statistical technique for 
investigating and modeling the relationship between 
variables. Applications of regression are numerous and 
occur in almost every field, including engineering, the 
physical sciences, economics and management [5]. In 
this paper, we employ the Monte Carlo algorithm [2, 3] 
for finding the variance of simple linear regression 
coefficient.  
 Here, we consider the simple linear regression as 
follows 
 
               i 0 1 i iy x , i 1,2,...,n= β + β + ε =  (1)  

 
where the intercept β0 and the slope β1 are unknown 
parameters and εi are error components. The errors are 
assumed to have mean zero and unknown variance σ2.  
The equation (1) can be rewritten as matrix form 
 

Y X= β + ε  
where  

 
T T T

1 n 1 n 0 1Y [y ,...,y ] ,X [X,.. . ,X ] , [ , ]= = β = β β  

 
and T

1 n[ ,..., ]ε = ε ε . 

The variance of T
0 1[ , ]β = β β  is found as  
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where  β0  and  β1  obtain  using  the  least  square 
method [2] 
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 We employ the Monte Carlo (MC) algorithm for 
calculating (XTX)-1. 

 
MARKOV CHAIN MONTE CARLO 

ALGORITHM FOR OBTAINING  
THE INVERSE OF A MATRIX 

 
 In the process of calculating the inverse of matrix 
B in equation BX=f, by Monte Carlo method, firstly, 
from the Markov chain of { xn } n = 0 with a status of 
S={1,….,n} (the number of members of the chain space 
status must be equal to the dimension of the matrix) a 
stochastic path would be assumed [1-3] 
 

0 1 2 ki i i  i→ → → →L  

 
 We will assume a matrix of probability of 
transformation in this Markov chain as P= {pij} and the 
first distribution would be pi0  
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i i ii........ i i
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− −
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 In formula (2) the elements of the numerator are 
very similar to entries of frequency matrix A and the 
elements of denominator are the probability of choosing 
the elements of the numerator, i.e. for instance, the 
entry ai ik 1 k−

 of matrix A (which would be stated 

later) will be chosen with a probability of Pi ik 1 k−
 [3]. 

We will show that ( )1
k mrT b− is non-transverse for the 

vector of answer. In general, we will have 
 

BX f x AX f= ↔ = +  
 

k
k+1 m

m=0

X A f = ∑
 

 
k

k+1 m -1

k k
m=0

IlimX lim A f f (II A) f
I A

=  
→∞ →∞

= = −
−∑  = B-1 f = X 

 
11 2 m

ijB b I A A ...... A .....
−−  = = + + + + +   

 
 The mth element of vector X is  
 

n
1

m mr r
r 1

X b f−

=

= ∑  

 
It is enough to assume 
 

( )T
rf   e    0,...,0,1,..., 0 = =  

 
in this case we will have 
 

1
m mrX b−=  m=1,2,…, n 

 
Theorem: The inverse of square and nonsingular 
matrix Bnxn by Monte Carlo method will be calculated 
as follows:  
 

j

N
1 (S)

mr j
j|i rs 1

1
b W
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−

==

 
 
  
∑= ∑  

 
Remark: Note  that  that  if  K will be large enough, for 
h = (0,…,0,1,0,…,0) and f = (0,…,0,1,0,…,0) we will 
have  

 

( )( ) ( )( )1 1 1
k mr mr mrk k

limE(limE T b E T b h,x b− − −
∞→∞ →∞

= = =  

 
CALCULATION OF  

THE INVERSE OF MATRIX B 
 
 In this section, we will show iterative form in a 
way that it will be convergent to the main answer. 
Therefore, we should present particular decompositions 
for the nonsingular matrix of coefficients Bn× n. In this 
case we can rewrite matrix B as a composition of 
prevalent diagonal matrix and a balance matrix. By this 
decomposition, the inverse of matrix B will be obtained 
from the inverse of the diagonal prevalent matrix. We 
assume the decomposition D=B+E in a way that D 
become a prevalent diagonal matrix. D-1 will be 
calculated according to the algorithm presented below. 
Afterwards we calculate the inverse of matrix B by the 

below algorithm by D-1. The residual matrix 
n

i
i 1

E s
=

= ∑  

is, in which si is a matrix of order 1 in which all of the 
elements except elements (i,i) are zero. Assume that 
 

( )n ( n 1 ) (0)B B E, B B−= + =  
 
in this  case the inverse [B(i)]-1 would be calculated as 
follows:  
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 Algorithm for calculating the prevalent diagonal 
matrix D(D-1)  
 
Step 1: Receiving prevalent diagonal matrix Dnxn and 
the values for parameters ε and δ will be received. 
 
Step 2: Put D= B – B1 which Bnxn is a diagonal matrix 
in a way that i=1,..,n, bii = dii 
 
Step 3: calculating T= B-1 B1 
 
Step 4: Calculating ||T|| and  
 

( )

2

0.6745 1
N .

1 T

 
=   ε − 

 

 
Step 5: We assume i=1 (where I varies from 1 to N) 
and j=1 (where j varies from 1 to n). 
 
Step 6: We assume w0=1, sum(i)=0, point=i and tk =0. 
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Step 7: Randomly and steadily we produce the next 
point number. 
 
Step 8: If the value of T[point] [next point]≠0 we will 
proceed to the next step, otherwise it refers to other 
stochastic number to the variable point so that a non 
zero number will be chosen. 
 
Step 9: We calculate  
 

j j 1
T point nextpoint

W W
p point nextpoint−

    =
    

 

 
Step 10: It refers to the value of next point to the 
variable point and assume:  
 

Sum (i) = sum (i) + wj 

 
Step 11: If |Wj| < d we assume tK= tK+1 (otherwise we 
assume j=j+1 and if j<n we go back to step seven and 
follow the steps again) 
 
Step 12: If tk = N the fifth step (the loop corresponding 
to i,j) will be up, otherwise we go back to step seven 
and follow the trend until comes true tk = N. 
 
Step 13: The average and SUM (i) will be calculated. 
 

ESTIMATION OF THE MONTE  
CARLO PARAMETERS 

 
 Parameters T (the length of Markov chain) and N 
(the number of sample systems) have essential role in 
calculation of the inverse of a matrix. These parameters 
are important since the time and the cost are directly 
dependant on them. 
 
Estimation  of  parameter T: Assume  that  for  every 
i = 1,…,n, the elements of transition probability matrix 
P, for every non zero matrix A, is defined as below 
 

ij
ij

ij

a
P  ,      j  1,2 ,. . .,n 

a
= =

∑
 

 
Now, we define the Monte Carlo estimator Θ* as below 
 

[ ] j

k
j k

j 0k

g
g W

p
α

α

∞
∗

=

Θ = ϕ∑  

where  

j 1 j

j 1 j

k k
j j 1 0

k k

a
W W , W 1

p
−

−

−= =  

 
 On the other hand we stop the calculation process 
of sum of Θ*, Whenever |W i|<δ, in which δ is a positive 
small number, we will have 

0 1 1 2 i 1 i 0 1 1 2 i 1 i

0 1 1 2 i 1 i0 1 1 2 i 1 i

i

i

a a a a a a
W

a a ap p p
A A A

A

− −

−−
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= = δ

… …
… L  

 
We can write 
 

ilog||A|| = log δ 
 
Therefore we have 
 

log
T i 1

log A

 δ
= ≤ + 

  
 

 
Estimation of parameter N: Regarding to the 
convergence condition of Newman series we can write 
 

∗θ ≤
  

 
 On the other hand the variance of estimation of θ* 
is finite. Therefore we will have:  

 

( ) ( )2Var E∗ ∗θ ≤ θ ≤
  

 
 If the estimation of θ is a Monte Carlo estimation, 
considering to the theorem of central limit for large 
quantities of n we will have:  
 

( ) ( )








N
EN

θ
θθ

var
,~  

 
 Now we define the probability of error for Monte 
Carlo method as below:  
 

( ){ } ( ){ }N N

1
P E r P E r

2
θ − θ ≈ ≈ θ − θ  

 
 In this case, regarding the theorem of central limit, 
we will have 
 

( )
N

Var
r 0.6745

N
θ

=  

 
 Therefore if the accuracy of error be ( )Eε = θ − θ , 

for large number then 
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( ) ( )2

2

0.6745 .Var
N

θ
≥

ε
 

 
 On the other hand, considering the two previous 
relations we can have:  
 

( )
( )

2

22

0.6745 1
N

1 A
≥

ε −
 

 
NUMERICAL EXPERIMENTS 

 
Example 1: Calculating the relation between the 
amount of food (Y) eaten by a turkey and the average 
weight (X1) is desired. Ten turkey have been chosen. 
Data have been presented in the Table 1. 
 Linear regression model of Y = β0+β1X1 will be 
used for processing the data. Matrix X and matrix Y are 
as below:  
 

1

2

.

1

n

87.1 1 4.6
93.1 1 5.1

.. . .
Y ,X , ,

.. . .

.. . .
94.4 1 5.1

ε    
     ε    
     β 

= = β = ε =       β      
    
    
ε          

 
 
 We need to estimate the variance of regression 
coefficient β 
 

2 1

2
i

2 2
i i1

2 2
i i

V( ) (XX)

x x

n (x x) (x x)
(xx)

x 1

(x x) (x x)

16.24609375 3.2421875
3.2421875 0.65104167

16.24609375 3.2421875
V( ) (5.587)

3.241875 0.65104167

90.76692578 1

−

−

′β = δ

 − 
 − −
 ′ =
 −
 

− −  
− 

=  − 
− 

β =  − 
−

=

∑
∑ ∑

∑ ∑

8.11410156
18.1410152 3.63736981

 
 − 

 

 
 On the other hand we need to solve the inverse of 
this matrix (XX′)-1, by Monte Carlo method:  
 

( ) 1
MC

13.177 11.768
X X

65.661 58.828
−  ′ =  

 
 

 

( ) 1
MATLAB

13.169 11.768
X X

65.681 58.820
−  ′ =  

 
 

 
Table 1: The average of body weight (X) and the amount of food (Y) 

eaten by 10 turkeys within 8 hours 

Observation Consuming (Y) Food Weight (X) 

1 87.1 4.6 
2 93.1 5.1 

3 89.8 4.8 

4 91.4 4.4 

5 99.5 5.9 

6 92.1 4.7 

7 95.5 5.1 

8 99.3 5.2 

9 93.4 4.9 

10 94.4 5.1 

 

Table 2: Regression Coefficients by Monte Carlo method 

 Y  X1 X2 X3  X3 X4 

1 43 51 30 39 61 92 

2 63 64 51 54 63 73 

3 71 70 68 69 76 86 

4 61 63 45 47 54 84 

5 81 78 56 66 71 83 

6 43 55 49 44 54 49 

7 58 67 42 56 66 68 

8 71 75 50 55 70 66 

9 72 82 72 67 71 83 

10 67 61 45 47 62 80 

11 64 53 53 58 58 67 

12 67 60 47 39 59 74 
13 69 62 37 42 55 63 

14 68 83 83 45 59 77 

15 77 77 54 72 79 77 

16 81 90 50 72 60 54 

17 74 85 64 69 79 79 

18 65 60 65 75 55 80 

19 65 70 46 57 75 85 

20 50 58 68 54 64 78 

 
Example 2: Relation between the grade which clerks 
give to assessor (Y) with study of clerk's complain 
(X1),and preventing from distinguish (X2),and learning 
some new things (X3),and giving overtime work (X4) 
and extravagance in criticizing of weak works (X5) are 
being considered. Therefore we gather 20 observations 
from these 6 variable from insurance company, which 
is shown in the following Table 2. A linear regression 
model is  
 

0 1 1 2 2 3 3 4 4 5 5Y  + X X X + X + X= β β +β +β β β  

 
is becoming on data.The matrix form is Y = Xβ+β. The 
form of matrix X and vector Y is  
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20×1

43 1 51 30 39 61 92
63 1 64 51 54 63 73
71 1 70 68 69 76 86
. . . . . . .

Y = , X =. . . . . . .
. . . . . . .

65 . . . . . .
65 1 70 46 57 75 85
50 1 58 68 54 64 78

   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

 
Now we calculate the equation by variance of regression coefficients with Monte Carlo method 
 

1 51 30 39 61 92
1 64 51 54 63 73

1 1 1 . . . 1 1
1 70 68 69 76 86

51 64 70 . . . 70 58
. . . . . .

30 51 68 . . . 46 68
X X = . . . . . .

39 54 69 . . . 57 54
. . . . . .

61 63 76 . . . 75 64
. . . . . .

92 73 86 . . . 85 78
1 70 46 57 75 85
1 58 68 54 64 78

 
 
             ′              

 






 
 

25 1364 1075 1127 1291 1498
1364 95494 74639 78306 89030 102103
1075 74639 60913 61893 69915 80971

X X =
1127 78306 61893 66151 73787 84628
1291 89030 69915 73787 84659 97374
1498 102103 80971 84628 97374 114462

 
 
 
 

′  
 
 
 
  

 

 
The inverse of matrix is being calculated by Matlab software and MAO method as beow. 
It is considering that there is not any notorious error in these answers so we do not need to filter them. 
 

-1
MATLAB

   0.1920   -0.0008   -0.0001    0.0000    -0.0008   -0.0011
   -0.0008    0.0008   -0.0002   -0.0001   -0.0006    0.0001
   -0.0001   -0.0002    0.0005   -0.0002    0.0002   -0.0002

XX) =
    0.

′(
0000   -0.0001   -0.0002    0.0007   -0.0004    0.0001

   -0.0008   -0.0006    0.0002   -0.0004    0.0016   -0.0006
   -0.0011    0.0001   -0.0002     0.0001   -0.0006    0.0005

 
 
 
 
 
 
 
 
    

 

( )-1

MC

0.1922 -0.0008 -0.0001 0.0000 -0.0008 -0.0010
-0.0008 0.0008 -0.0003 -0.0001 -0.0006 0.0001
-0.0002 -0.0002 0.0004 -0.0002 0.0002 -0.0002

XX =
0.0000 -0.0001 -0.0002 0.0007 -0.0004 0.0001
-0.0008 -0.0006 0.0002 -0.0004 0.0014

′

-0.0007
-0.0010 0.0001 -0.0002 0.0002 -0.0006 0.0006

 
 
 
 
 
 
 
 
  

  
The estimate of variance of regression coefficient is: 
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2 1

1359.2 5.6577 0.7072 0.0000 5.6577 7.072
5.6577 5.6577 2.1216 0.7072 4.2432 0.7072
1.4144 1.4144 2.8288 1.4144 1.4144 1.4144

V( ) (XX)
0.0000 0.7072 1.4144 4.9504 2.8288 0.7072
5.6577 4.2432 1.4441 2.8288 9.

−

− − −
− − − −
− − − −

′β = δ =
− −

− − − 9009 4.9504
7.0721 0.7072 1.4441 1.4144 4.2432 4.2432

 
 
 
 
 
 
 −
 
− − −  

  
CONCLUSION 

 
 We have seen that both of  Matlab and Monte 
Carlo method have the same answers and there is not 
any notorious difference between their answers. 
However, in large scale problems the Monte Carlo 
method is efficient. 
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