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Abstract: In this article, the Exp -function method is applied to construct traveling wave solutions of the 
fifth-order Sawada-Kotera equation. This method is one of the powerful methods that appear in recent time 
for establishing exact traveling wave solutions of nonlinear partial differential equations. The solution 
procedure of this method is implemented by symbolic software, such as, Maple. We obtain some new exact 
solutions including solitary and periodic wave solutions. It is shown that the Exp -function method is 
straightforward and effective mathematical tool for solving nonlinear evolution equations in mathematical 
physics and engineering sciences. In addition, some of solutions are described in the figures with the aid of 
commercial software Maple. 
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INTRODUCTION 
 
 Many phenomena in physics, applied mathematics 
and engineering sciences are described by Nonlinear 
Evolution Equations (NLEEs). The investigation of 
traveling wave solutions for NLEEs is being a 
promising subject in different branches of mathematical 
and physical sciences, such as, biology, chemistry, 
physics  etc.  In  recent  time,  many  methods  have 
been recommended to obtain exact solutions of 
nonlinear evolution equations, for instance, the Hirota’s 
bilinear transformation method [1], the Backlund 
transformation method [2], the inverse scattering 
method [3], the homotopy analysis method [4-7], the 
tanh-function method [8], the homogeneous balance 
method  [9], the variational iteration method [10-18], 
the  Jacobi  elliptic  function  expansion  method  [19] 
and others [20-29]. 
 Recently, He and Wu [30] presented a 
straightforward   and   concise  method,  called  the 
Exp-function method to obtain generalized solitary 
wave solutions of NLEEs. The Exp -function method is 
being effectively used to study various kinds of 
differential equations for establishing traveling wave 
solutions, for example, discrete equation [31], high-
dimensional equations [32-34], modified Zakharov-
Kuznetsov and Zakharov-Kuznetsov-modified equal 
width equation [35], KdV-Burger’s equation [36], 
equations with variable-coefficients [37, 38] reaction-
diffusion equations [39], a system of nonlinear partial 

differential equations [40], nonlinear evolution 
equations with higher order nonlinearity [41], 
generalized fisher equation [42], sixth-order Boussinesq 
equation and regularized long wave equations [43], 
higher dimensional nonlinear partial differential 
equation [44], two-dimensional Ginzburg-Landau 
equation [45], nonlinear Beam equation [46] and so on. 
 In this article, we apply the Exp -function method to 
construct exact solutions including solitary wave 
solutions and periodic wave solutions for the fifth-order 
Sawada-Kotera equation. 
 

BASIC IDEA OF THE  
EXP-FUNCTION METHOD 

 
 This paper is dealt with the fifth-order Sawada-
Kotera equation Referred by Liu and Dai [47]: 
 
          2

t x x xx xxx xxxxxu 45u u 15u u 15uu u 0+ + + + =  (1) 

 
 Now, we present the Exp -function method in 
solving  the  nonlinear  partial  differential  equation  of 
the form: 
 
                 x t xx x t t tQ(u,u , u , u ,u ,u ...) 0=  (2) 

 
where Q is a polynomial in u = u(x,t) and the subscripts 
indicate the partial derivatives. The main steps of the 
Exp-function method [30] are as follows: 
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Step 1: Consider the traveling wave variable 
 
                   u(x,t) v( ), x s t= η η = +  (3) 
 
 Now using the traveling wave variable (3), Eq. (2) 
becomes an ordinary differential equation (ODE) in the 
form: 
 
                     P(v,v ,v ,v , . . . ) 0′ ′′ ′′′ =  (4) 

 
where primes denote the derivatives with respect to η. 
 
Step 2: Suppose the solution of the ODE (4) can be 
expressed in the following form [30]: 
 

d

n
n c c d

q
p q

m
m p

a exp(n )
a exp( c ) a exp(d )

v( )
b exp( p ) b exp(q )

b exp(m )

=− −

−

=−

η
− η + + η

η = =
− η + + η

η

∑

∑
L
L (5) 

 
where c,d,p and q are positive integers which are 
unknown to be determined, an and bm are unknown 
constants. Eq. (5) can be rewritten in the following 
equivalent form: 
 

           c d

p q

a exp(c ) ... a exp( d )
v( )

b exp(p ) ... b exp( q )
−

−

η + + − η
η =

η + + − η
 (6) 

 
 This equivalent presentation plays an important 
and fundamental role for searching analytical solutions 
of NLEEs. 
 
Step 3: For determining the values of c and p, we 
balance the linear term of the highest order to the 
highest  order  nonlinear  term  and  for  determining 
the  values  of  d  and q, we balance the lowest order 
linear term to the lowest order nonlinear term in Eq. (4). 
This  completes  the  determination  of  the  values  of 
c,d,p and q. 
 
Step 4: Putting the values of c,d,p and q into Eq. (6), 
then substituting Eq. (6) into Eq. (4) and simplifying, 
we obtain 
 

                        j
j

C exp(j ) 0η =∑  (7) 

 
 Setting each coefficient Cj = 0, yields a set of 
algebraic equations for ac’s and bp’s. 
 
Step 5: Suppose the unknown ac’s and bp’s can be 
obtained  by  solving  a set algebraic equations obtained  

 
in step 4. Substituting these values into Eq. (6), we 
obtain exact traveling wave solutions of the Eq. (2). 
 

APPLICATIONS OF THE METHOD 
 
 In  this  section, we  use  the Exp -function method 
to construct  generalized  solitary  and  periodic  
solutions  of  the  fifth-order Sawada-Kotera equation 
(1). The  obtained  solutions  and  the  solutions 
obtained in previous literature are discussed in this 
section. Furthermore, the obtained solutions are 
depicted  in  graphs  with  the  aid  of  commercial 
software Maple.  
 
Solutions of the Sawada-Kotera equation: In this 
subsection, we apply the Exp -function method [30] to 
the fifth-order Sawada-Kotera equation (1). Using the 
transformation (3), Eq. (1) becomes 
 

         ( )52sv 45v v 1 5 v v 15vv v 0′ ′ ′ ′′ ′′′+ + + + =  (8) 

 
where primes denote the derivatives with respect to η. 
According to step 2, solution of Eq. (8) can be written 
in the form of (6). 
 To determine the values of c and p, according to 
step 3, we balance the linear term of the highest order in 
Eq. (8) with the highest order nonlinear term. With the 
aid of Maple, we obtain 
 

                  ( )5 1

2

c exp[(5p c) ] ...
v

c exp[6p ] ...
+ ξ +

=
ξ +

 (9) 

and 

                 3

4

c exp[2(2p c) ] ...
vv

c exp[6p ] ...
+ ξ +′′′ =
ξ +

 (10) 

 
where ci’s are determined coefficients only for 
simplicity. Balancing the highest order of the Exp -
function, from (9) and (10), we obtain 5p+c = 2(2p+c), 
which leads to the result: p = c. 
 To determine the values of q and d, we balance the 
linear term of the lowest order in Eq. (8) with the 
lowest order nonlinear term. We have 
 

              ( )5 1

2

... d exp[ (5q d) ]
v

... d exp[ 6q ]
+ − + ξ

=
+ − ξ

 (11) 

 

            ( )3

4

... d exp[ 2 2q d ]
vv

... d exp[ 6q ]
+ − + ξ′′′ =

+ − ξ
 (12) 

 
 Balancing the lowest order of the Exp -function, 
from Eqs. (11) and (12), we obtain -(5q+d) = -2(2q+d) 
which leads to the result: q = d. 
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 Here, c and d are free parameters, therefore, they 
can take any values. But, the final solution does not 
depend upon the choice of values of c and d. 
 
Case 1: Choose p = c = 1, q = d = 1. 
For this case, the trial solution Eq. (6) reduces to 
 

                   ( ) 1 0 1

1 0 1

a e a a ev
b e b b e

η − η
−

η − η
−

+ +η =
+ +

 (13) 

 
In case b1≠0, Eq. (13) can be simplified as: 
 

                   ( ) 1 0 1

0 1

a e a a ev
e b b e

η − η
−

η − η
−

+ +η =
+ +

 (14) 

 
 By substituting Eq. (14) into Eq. (8) and equating 
the coefficients of exp(±nη), n = 0,1,2,3,…, with the 
aid of algebraic software Maple, we obtain a set of 
algebraic equations in terms of a-1, a0, a1, b-1, b0 and s  
 

5 4 3 2
5 4 3 2 1 0 1

2 3 4 5
2 3 4 5

1
( C e C e C e C e C e C C e

A
C e C e C e C e ) 0

η η η η η − η
−

− η − η − η − η
− − − −

+ + + + + +

+ + + + =
(15a) 

 

 
and setting each coefficient of exp(±nη), n = 0,1,2,3,…, 
to zero, we obtain  
 

       5 4 3 2 1 0

1 2 3 4 5

C 0,C 0,C 0,C 0,C 0,C 0,
C 0,C 0,C 0,C 0,C 0− − − − −

= = = = = =
= = = = =

 (15b) 

 
 For determining unknowns, the obtained above 
system of algebraic Eqs. (15b) have been solved with 
the aid of commercial software Maple, we obtain the 
following solutions. 
 

             
0 0 0 0 1

2 2
1 0 1 0

5 1b b , a b , a ,
3 3

1 1
a b , b b , s 1

12 4− −

= = = −

= − = = −
 (16) 

 
where b0 is arbitrary constant.  
 

     
2

1 1 0 0 1 1 0 0 1 0 0

2 2
1 0 1 1

1a a , b b , a a b , a a b b ,
4

1
b b , s 45a 15a 1

4

−

−

= = = = +

= = − − −
 (17) 

 
where a1 and b0 are arbitrary constants.

  Now substituting Eq. (16) into Eq. (14), we obtain 
following solution:  
 

                ( )
2

0 0
2

0 0

4e 20b b ev
12e 12b 3b e

η − η

η − η

− + −η =
+ +

 (18) 

 
Eq. (18) can be simplified as follows: 
 

   ( ) ( ) ( )
0

2 2
0 0 0

1 8b
v

3 4 b cosh 4 b sinh 4b
−

η = +
+ η + − η +

 (19) 

 
where η = x-t. 
If b0 = 2, Eq. (19) becomes 
 

               ( ) ( )
1 2

v x, t
3 1 cosh x t
−

= +
+ −

 (20) 

 
 Again, substituting Eq. (17) into Eq. (14) and 
simplifying, we obtain 
 

     ( ) ( ) ( )
0

1 2 2
0 0 0

4b
v a

4 b cosh 4 b sinh 4b
η = +

+ η + − η +
 (21) 

 
where ( )2

1 1x 45a 15a 1 t.η = − + +  

If b0 = 2, Eq. (21) becomes 
 

       ( ) ( )1 2
1 1

1
v x,t a

1 cosh x 45a 15a 1 t
= +

 + − + + 
 (22) 

 
Case 2: p = c = 2, q = d = 1. 
For this case, the trial solution Eq. (6) becomes  
 

             ( )
2

2 1 0 1
2

2 1 0 1

a e a e a a ev
b e b e b b e

η η − η
−

η η − η
−

+ + +η =
+ + +

 (23) 

 
 Since, there are some free parameters in Eq. (23), 
for simplicity, we may consider b2 = 1 and b -1 = 0. Then 
the solution Eq. (23) is simplified as follows: 
 

             ( )
2

2 1 0 1
2

1 0

a e a e a a ev
e b e b

η η − η
−

η η

+ + +η =
+ +

 (24) 

 
 Executing  the  same  procedure  as  described  in 
case 1, we obtain 
 

          
2

1 1 1 0 1

2
1 1 2 0 1

1b b , a 0, a b ,
12

5 1 1
a b , a , b b , s 1

3 3 4

−= = = −

= = − = = −
 (25) 

 
where b1 is free parameter.  
 

     
2

2 2 1 1 1 0 2 1

2 2
1 2 1 1 0 1 2 2

1a a , b b , a 0, a a b ,
4

1
a a b b , b b , s 45a 15a 1

4

−= = = =

= + = = − − −
 (26) 
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where a2 and b1 are free parameters. 
 Substituting Eq. (25) into Eq. (24) and simplifying, 
we obtain  
 

    ( ) ( ) ( )
1

2 2
1 1 1

1 8b
v

3 4 b cosh 4 b sinh 4b
−

η = +
+ η + − η +

 (27) 

 
where η = x-t. 
If b1 = 2, Eq. (27) becomes 
 

               ( ) ( )
1 2

v x, t
3 1 cosh x t
−

= +
+ −

 (28) 

 
 Again, substituting Eq. (26) into Eq. (24) and 
simplifying, we obtain  
 

    ( ) ( ) ( )
1

2 2 2
1 1 1

4b
v a

4 b cosh 4 b sinh 4b
η = +

+ η + − η +
 (29) 

 
where ( )2

2 2x 45a 15a 1 t.η = − + +  

If b1 = 2, Eq. (29) becomes 
 

     ( ) ( )( )2 2
2 2

1
v x,t a

1 cosh x 45a 15a 1 t
= +

+ − + +
 (30) 

 
 It is noted that solutions (20) and (28) are identical. 
And if we set a2 = a1, solution (30) is identical to 
solution (22). 
 
Case 3: Choose p = c = 2, q = d = 2. 
For this case, the trial solution Eq. (6) becomes  
 

       ( )
2 2

2 1 0 1 2
2 2

2 1 0 1 2

a e a e a a e a ev
b e b e b b e b e

η η − η − η
− −

η η − η − η
− −

+ + + +η =
+ + + +

 (31) 

 
 For  simplicity,  we  may  consider b2 = 1 and b -1 = 
b-2 = 0. Then solution Eq. (31) is simplified as follows: 
 

      ( )
2 2

2 1 0 1 2
2

1 0

a e a e a a e a ev
e b e b

η η − η − η
− −

η η

+ + + +η =
+ +

 (32) 

 
 Executing  the  same  procedure  as  described  in 
case 1, we obtain  
 

          
2

1 1 1 2 0 1

2
1 1 2 0 1

1b b , a 0, a 0, a b ,
12

5 1 1
a b , a , b b , s 1

3 3 4

− −
−= = = =

= = − = = −
 (33) 

 
where b1 is free parameter.  

 

    
2

2 2 1 1 2 1 0 2 1

2 2
1 2 1 1 0 1 2 2

1a a , b b , a 0, a 0, a a b ,
4

1
a a b b , b b , s 45a 15a 1

4

− −= = = = =

= + = = − − −
 (34) 

 
where a2 and b1 are free parameters.  
 Substituting the Eq. (33) into Eq. (32) and 
simplifying, we obtain  
 

    ( ) ( ) ( )
1

2 2
1 1 1

1 8b
v

3 4 b cosh 4 b sinh 4b
−

η = +
+ η + − η +

 (35) 

 
where η = x-t. 
If b1 = 2, Eq. (35) becomes 
 

                ( ) ( )
1 2

v x, t
3 1 cosh x t
−

= +
+ −

 (36) 

 
 Again, substituting Eq. (34) into Eq. (32) and 
simplifying, we obtain 
 

    ( ) ( ) ( )
1

2 2 2
1 1 1

4b
v a

4 b cosh 4 b sinh 4b
η = +

+ η + − η +
 (37) 

 
where ( )2

2 2x 45a 15a 1 t.η = − + +  

If b1 = 2, Eq. (37) becomes 
 

       ( ) ( )( )2 2
2 2

1
v x,t a

1 cosh x 45a 15a 1 t
= +

+ − + +
 (38) 

 
 Now, we have observed that solution (36) is 
identical to solutions (20) and (28). And if we set a2 = 
a1, solution (38) is identical to solutions (22) and (30). 
 
Case 4: Now choose p = c = 3 and q = d = 2 
For this case, the trial solution Eq. (6) becomes 
 

 ( )
3 2 2

3 2 1 0 1 2
3 2 2

3 2 1 0 1 2

a e a e a e a a e a ev
b e b e b e b b e b e

η η η − η − η
− −

η η η − η − η
− −

+ + + + +η =
+ + + + +

 (39) 

 
Eq. (39) can be rewritten as: 
 

   ( )
2 2 3

3 2 1 0 1 2
2 2 3

3 2 1 0 1 2

a e a e a a e a e a ev
b e b e b b e b e b e

ξ ξ −ξ − ξ − ξ
− −

ξ ξ − ξ − ξ − ξ
− −

+ + + + +η =
+ + + + +

 (40) 

 
 Since, there are some free parameters in Eq. (40), 
we  may  consider  a-2 = 0,  b3 = 1,  b0 =  0, b-1 = 0 and 
b-2 = 0, so that the Eq. (40) reduces to the Eq. (32). This 
indicates that the case 4 is equivalent to the case 3. 
Similarly, if we put a-2 = 0, a-1 = 0,b3 = 1, b0 = 0, b-1 = 0 
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and b-2 = 0 into Eq. (40), we obtain the trial solution 
form as Eq. (24). i.e., case 4 is also equivalent to the 
case 2.  
 Again, Eq. (40) can be rewritten in the form: 
 

( )
2 3 4

3 2 1 0 1 2
2 3 4

3 2 1 0 1 2

a e a a e a e a e a ev
b e b b e b e b e b e

η − η − η − η − η
− −

η − η − η − η − η
− −

+ + + + +η =
+ + + + +

(41) 

 
 If  we  set  a-2 = 0,  a-1 = 0,  a0 = 0,  b3 = 1,  b-2 = 0, 
b-1 = 0 and b0 = 0 into Eq.(41), we obtain the same form 
as Eq. (14). This implies that the case 4 is equivalent to 
the case 1. 
 If we consider p = c = 3 and q = d = 3, it can be 
shown that this Case is also equivalent to the case 1, 
case 2 and case 3. 
 
Results and discussion: Many authors obtained 
traveling wave solutions of the fifth order Sawada-
Kotera equation by applying different methods, such as, 
Liu and Dai [47] studied this equation by using Hirota’s 
bilinear   method.  Feng   and   Zheng   [48]  established 
 

 

 
Fig. 1: Solitons solution  
 

 

 
Fig. 2: Solitons solution 

 
traveling wave solutions of the same equation via the 
(G′/G)-expansion method. Wazwaz [49] concerned 
about the extended tanh method to obtain exact 
solutions of this equation. Salas [50] implemented the 
projective Riccati equation method to construct 
analytical solutions of the same equation. But, to the 
best of our knowledge, the fifth-order Sawada-Kotera 
equation is not investigated to construct exact traveling 
wave solutions by appying the Exp -function method. 
The solutions are obtained in this article are new and 
have not been found in the previous literature. 
 If we set a1 =  a2 = 0 in (22), (30) and (38). Then 
Eqs. (22), (30) and (38) become Liu and Dai’s [47] 
solution which reads:  
 

         ( ) 2
1

1 x tu x,t sech ,
2 2

− =   
when 

1
P

2
=  (42) 

 
Graphical representations of the solutions: With the 
aid of Maple, the graphical illustrations of solutions are 
demonstrated in the Fig. 1-12: 
 

 

 
Fig. 3: Solitons solution for a1 = 1  
 

 

 

Fig. 4: Solitons solution for a1 = 1×10-1  
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Fig. 5: Solitons solution for a1 = 5×10-3  
 

 

 
Fig. 6: solitons solution for a1 = 1×10-2 
 

 
 
Fig. 7: Periodic solution 

 

 
 
Fig. 8: Solitons solution for a1 = 1×10-4 

 

 
 
Fig. 9: Solitons solution for a1 = 0.125 
 

 
 
Fig. 10: Solitons solution for a1 = 0.25 
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Fig. 11: Periodic solution for a1 = 0.5  
 

 
 
Fig. 12: Solitons solution for a1 = 1×10-9 
 

CONCLUSIONS 
 
 The Exp-function method is successfully applied 
for constructing some new traveling wave solutions of 
the fifth-order Sawada-Kotera equation which is highly 
nonlinear. Our obtained traveling wave solutions 
demonstrate that the Exp -function method is 
straightforward and concise mathematical tool to 
establish analytical solutions of NLEEs. Therefore, we 
hope that this method can be more effectively used to 
investigate others NLEEs which are frequently take 
place in engineering, applied mathematics and physical 
sciences. 
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