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Abstract: A set of verticesW is called aweak total resolving, simply written as WTR-set, if for every pair of
distinct verticesx,y in Gwith xI V(G)\W andy 1 W, thereisavertex wi W\{y} such that d(x,w) * d(y,w). A
set of vertices W is called astrong total resolving, written as STR-set, if for every pair of distinct vertices x,y
inG, thereisavertex win W suchthat d(x,w) * d(y,w) for x,y* w. Thecardinality of aminimumWTR-set
and a minimum STR-set is called the weak total metric dimension and strong total metric dimension of G,
denoted by b,,:(G) and bg(G), respectively. In this paper, we introduce total metric dimension of graphs and
study its relationship with metric dimension and related parameters. We give some realizable results and the
maximum order of a connected graph G in terms of diameter and weak total metric dimension of G has also
been investigated.
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INTRODUCTION

Metric dimension is a parameter that has appeared in various applications of graph theory, as diverse as,
pharmaceutical chemistry [1, 3], robot navigation [15], combinatorial optimization [19] and sonar and coast guard
Loran [20], to name a few. A basic problem in chemistry is to provide mathematical representations for a set of
chemical compounds in away that gives distinct representations to distinct compounds. As described in [1, 3], the
structure of achemical compound can berepresented by alabeled graph whose vertex and edge label s specify theatom
and bond types, respectively. Thus, a graph-theoretic interpretation of this problem is to provide representations for
the vertices of agraph in such away that distinct vertices have distinct representations.

We refer [5] for general graph theoretic notations and terminology not described in this paper. We consider
simple connected graphs G with vertex set V(G) and edge set E(G). Motivated by the problem of uniquely determining
the location of an intruder in a network, Slater [20] introduced the concept of metric dimension which was also
independently studied by Harary and Melter [8]. Applications of thisinvariant to the navigation of robotsin networks
are studied by Khuller et al. [15], to chemistry by Chartrand et al. [3] and to problem of pattern recognition and image
processing, some of which involve the use of hierarchical data structures are studied by Melter and Tomescu [16].
Gary and Johnson [7] noted that to determine the metric dimension of a graph is NP-hard, however, its explicit
construction was given by Khuller et al. [14]. For more results about the notion of metric dimension and its
applications, we refer to anice survey by Saenpholphat and Zhang [3, 6, 8-13, 17, 18].

The distance, d(u,v), between two vertices u and v in G is the minimum number of edges in a u-v path. The
diameter of G, denoted by D, is the largest distance between two verticesin V(G). A vertex w resolves two vertices u
and v if d(u,w)?® d(v,w). A vertex set Wi V(G) issaid to bearesolving set for G if for every two distinct vertices u
andv inV(G), thereisavertex w in W that resolves u and v. The minimum cardinality of aresolving set of Giscalled
the metric dimension of G and is denoted by b(G). A resolving set of order b(G) iscalled ametric basis of G[3].

The code, cw(v), of a vertex vi V(G) with respect to a set W={w,...w.} is the k-tuple

(d(v,wy),d(v,w,),...,d(v,w,)) . Equivalently, the set W isaresolving set if for every two verticesv and w in V(G), we
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Fig. 1: (a) Graph G with resolving deficiency, (b) The resulting graph G¢
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Fig. 2: (a) Graph with resolving deficiency, (b) Graph after removing the resolving deficiency

have c,(v) t c,, (w). From the definition of metric dimension, it can be observed that the property of agiven set W of
vertices of agraph G to be aresolving set of G can be verified by investigating only the vertices of V(G)\W. Thisis
because every vertex Wi W is the only vertex of G whose distance from w is 0. A resolving set W for G is called a
wesak total resolving, simply written as WTR-set, if for every pair of distinct vertices x,y in G with xI V(G)\W and
yl W, thereisavertex Xl W\{y} such that d(x,w) * d(y,w) . It isclear from the definition that if V(G)\W is an empty
set, then the set of vertices V(G) is a WTR-set. The cardinality of a minimum WTR-set is called the it weak total

metric dimension of G, denoted by b,(G). A WTR-set of cardinality by(G) is called a weak total metric basis
(WTMB) of G. For apath P, and acomplete graph K, of order n, b,,(R)=2 and b, (K)=n .

A resolving set for Gis called astrong total resolving, written as STR-set, if for every pair of distinct vertices x,y
in G, thereisavertex win W such that d(x,w) * d(y,w) for x,y* w.Theminimum cardinality of an STRsetiscalled
thestrong total metric dimension of G, denoted bybg(G). An STR-set for G of cardinalitybg(G) iscalled astrong total
metric basis (STMB) of G. STR-set may or may not exist for a graph G. For example, STRset does not exist for a
complete graph on at least three vertices. We say that a graph G istotally resolved if there exists an STR-set for G.

Inagraph G, if WTR-set exists but thereis no subset of V(G) which admits the condition of STR-set, then we say
that there is a deficiency to resolve the graph Gtotally and is called the resolving deficiency in G. However, this
resolving deficiency can be removed by adding exactly one pendent vertex with each of those vertices of aresolving
set which do not admit the condition of STR-set. The number of vertices added in G to remove the resolving
deficiency is called the resolving deficiency number of G, denoted by h(G) and the vertices used for this purpose are
called the supporting vertices. After removing the resolving deficiency from G, the resulting graph wil | be denoted by
Gtand we say that the graph G¢has strong metric dimension bs(G8 with resolving deficiency number h(G).

Example 1.1: Consider the graph G shownin Fig. 1la. One can see that for the graph G, the set {w1,wg} isaminimum
resolving set and the set {wi,Weg,Wg} is a minimum WTR-set. But, there is no subset of V(H) which admits the
condition of STR-set because the vertices wg and wg have the same distances to all the vertices of G. So thereisthe
resolving deficiency in G. However, if we use the supporting vertex x (Fig. 1b), then this deficiency has been removed
from G and the set { x,w1,wg} isaminimum STR-set for Gt Hence b(G) = 2, byt(G) = 3and bg (G = 3 withh(G) = 1

Elements of metric basis were referred to as censorsin an application [2]. In an application, if one of the censors
does not work properly, we will not have enough information to deal with the intruder (fire, thief, etc). Consider a
graph G with two parts connected by a single vertex shownin Fig. 2a.
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One can assume Gas amodel of a housing complex with two sectors S; and S, of parallel housing rows. Suppose
that, for the sake of the security of the complex from intruder, the complex management wants to place the smallest
number of censors (detecting devices for arms) in the complex in such away that all the locations in the complex are
uniquely detected by their distances to the censors. Clearly, it is shown in Fig. 2athat any four locations from exactly
four parallel housing rowsin each sector is abest selection of smallest number of locations to place the censors. With
out loss of generality, we assume that the censors are placed at the locations 1,2,4 and 5 in the sector S; and at the
locations 6,8,14 and 15 in sector S,. This placement of the censors will assure the security of the whole complex only
if all the censors work properly and the collection S = {1,2,4,5,6,8,14,15} is called a resolving set for G. Now the
problem isthat if one of the censors or any two censors stop detecting the intruder due to any impenetrable problem,
then how to assure the safety of the insecured pairs of locations of the complex? For example, if the censor placed at
location 2 stops working, then the location 2 and 3 can not uniquely detected by their distancesto any of the remaining
censors or if the censors placed at thelocations 8 and 15 are collapsed, then the location 8 and 9,8 and 10,9 and 10,
13 and 14, 14 and 15, 13 and 15 all have the same distances to all the remaining censors and hence are not uniquely
detected by their distances. In the context of resolvability, we say that the collection S resolvesthe graph G but
not totally resolves G. The solution of this kind of problems is the origin of introducing the concept of total
resolvability in graphs.

Note that, if we place two more censors at the locations 3 and 7, then the collection T = £{3,7} of censors
assures that every pair of locations uniquely detected by their distances to some censors even any of the censors does
not work and is called aWTR-set for G. But, still thereisadeficiency in uniquely determining some pairs of location
where the censors placed. This deficiency is that if the censors placed at locations, say 2 and 5, stopped working
simultaneously, then thelocations 2 and 5 areinsecured and cannot be uniquely determined by their distancesto any of
the remaining censors. Thiskind of problem happen not only with the censors placed at the locations 2 and 5, but also
with the censors placed at thelocations{1,2,4,5} and thelocations {6,8,14,15}. In fact, thisis the resolving deficiency
in G. However, this deficiency can be removed by attaching exactly one censor to each of the censors placed at
locations { 1,2,4,5,6,8,14,15} . Then the resulting collection U = SE{9,10,11,13,16,17,18,19} completely assuresthe
safety of the complex. In the context of resolvability, we call the collection U, an STR-set for G with the supporting
vertices 16, 17, 18 and 19 (Fig. 2b).

MAINRESULTS

In this section, we study the relationship of a WTR-set and an STR-set with a resolving and a fault-tolerant
resolving set. Also, we give some realizable results. In the case of WTR-set, the following result holds.

Lemma 2.1: A resolving set W for agraph G isaWTR-set if and only if the code of every vertexwl W differ by at
least two coordinates from the code of each vertex vi V(G)\W.

Proof: Suppose that W is a WTR-set for G. Contrarily suppose that the code of a vertex, say w;, of W and a vertex
yl V(G)\W differ by only one coordinate. Since the code oy (w;) of w; has 0 at ith place, so the codes oy (w;) and cy(y)
differ by ith coordinate only, a contradiction.

Conversely, for every xI W and every y1 V(G)\W, the codes cy(x) and cw/(y) differ by at least two coordinates,
which meansthat W a WTR-set.

Two vertices u and v in a graph G are said to be distance similar if d(u,w)=d(v,w) foral wl V(G\{u,}. A
subset U of V(G) is called a distance similar set if every two verticesin U are distance similar. By all of the above
definitions, the following remark and proposition holds:

Remark 2.2:

(@ If uandv aredistance similar verticesin G and W be any resolving set for G, then ul W or vi W. Moreover, if
ul W, then (W\{u})E {v} alsoresolvesG.

(b) If U be a distance similar set of cardinality I, then any resolving set for G contains 1 elements of U. Any
WTR-set for G contains all elements of U.

(c) A graph G hasnon zero resolving deficiency if and only if there exist adistance similar setin G.

(d) An STR-set for G existsif and only if no two vertices of the graph are distance similar.
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Proposition 2.3: A WTR-set W for agraph G is an STR-set if every pair X,y of verticesin W is resolved by some
vertex of W other than x and y.

Now if agraph G contains distance similar vertices then by Remark 2.2(d), STR-set does not exist for G. So there
isaresolving deficiency in G and in order to remove this resolving deficiency, h(G) number of supporting verticesare
needed. Thus we have the following proposition:

Proposition 2.4: Let Gbeagraph. If therearer distancesimilar setsU,, U,,...,U, in G, then b (G932 § | U |+b(G)- r,
where G¢is the graph obtained from G after removing the resolving deficiency. Moreover, thisbound is sharp.

Proof: Since every resolving set contains § | U |- r vertices from r distance similar sets U, U,,...,U, , by Remark
2.2(b). So, at least § | U |- r supporting vertices required to remove the resolving deficiency for a resolving set of
cardinality b(G) to be admitted the condition of STMB of the graph G& Further, if we let G = K, (complete graph on n
vertices), then b, (G)=2n- 2 with h(G)=n- 1.

A resolving set W of agraph G is said to be fault-tolerant (simply written as FTR-set) if W\{w}, for eachwl W,
is also aresolving set for G. The fault-tolerant metric dimension of G is the minimum cardinality of an FTRset,

denoted by b®G). An FTR-set of order bG) is called a fault-tol erant metric basis (FTMB) [12]. From the definitions
of FTR-set and WTR-set, following lemmafollows:

Lemma 2.5: A WTR-set W for agraph G is FTRif and only if every pair x,y of vertices in G such that x,yl W is
resolved by at |east two vertices of W.

Pr oof: Supposethat W isan FTR-set for G. Assume contrarily that two verticesx and y in G are resolved by only one
vertex w of W, then WA{w} is not a resolving set since x and y have same codes with respect to WA{w}, a
contradiction.

Now suppose that every pair of verticesx,y in G, such that x,yl W isresolved by at least two vertices of W. Since
W isaWTR-set, W\{w}, for eachw inW, isalso aresolving set for G, by definition.

Example 2.6: Consider the graph G given in Fig. 3. Let W,={ w,, w,, w,.} . Then the codes of the vertices of G with
respect to W, are:, which implies that W, isa WTR-set for G. But, W is not an FTR-set because W1\{w;} does not

resolve G. If we add thevertex wz intoW 1, thenthe set W, = W,E{w.} isaWTRset aswell asanFTR-set for G. Also,

there is no 2-element subset of V(G) which weakly resolves all the vertices of G and thereis no FTR-set of cardinality
lessthan 4 for G, which impliesthat b, (G)=3 and b& G)=4.

By Lemmas 2.1 and 2.5, we have the following result:

Lemma2.7: A resolving set W for agraph Gisan STR-set if and only if (i) WisaWTR-set for G and (ii) for every
pair x,y of verticesin W, there existsa wi/ {x,y} in W which resolvesx andy.

Proof: Suppose W isan STR-set. Then, by definition, for every pair verticesin G, in particular X V(G)\W and yT W,
thereisavertex win W other thany such that d(x,w) * d(y,w), whichimpliesthat W isaW T R-set. Also, every pair of

verticesin W isresolved by some other vertex of W, which implies (ii).
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Conversely, if (i) and (ii) hold, then by Proposition 2.3, W isan STR-set.
Now we show that every pair a,b of positive integers with & k and b = atk (k>0) is realizable as the metric
dimension and weak total metric dimension some connected graphs.

Theorem 2.8: For any triplet (a,b,k) of positive integers witha2 k and b = a+k, there exists agraph G such that b(G) =
aand by(G) =b. In particular, b,,(G)- b(G)=k.

Proof: We have the following two cases:

Case 1: (When a= k) For k = 1, consider a path Py, of length a+b. Then, clearly, b(G) = aand b,(G) =b.
For k3 2, attach the graph G; shown in Fig. 4 with the path P, by identifying the vertex y 4 of G, and the vertices
V;, \p,...,V, Of Pyy. Call theresulting graph G. Note that, there are acopies of G; in G. Call the vertices of the ith copy

of G, y,Vy,Y,Y(1£i£a). Then thevertex y, from each copy of G participates to resolve the graph G and the
vertices y, and y, from each copy of G participate to weakly resolve G, which implies that b(G) = a and
b,.(G)=2a=bh.

Case 2: (When a>k) Consider the graph G, shown in Fig. 4. Make an identification graph G,=GJ G,, P,,,,x,, ] by
identifying x,1 G,, w1 P,, and x,=v,I G,. Again identify graphs G and G by G,=G,[G,G,V,,V,.,], Where
y,0 G and v, 1 G,.Let a- k=r31. Now, identify y,T G, withk-1 vertices of the path in graph G,. Also, identify
x,1 G, withr-1 vertices of the path in graph G,. Call the resulting graph G. Note that, there are k copies of G, in G.
Call the vertices of theith copy of Gy, ., v, y5 Y 1£i £k) . Also, there are r copies of G, in G. Cdl the vertices of the
ith copy of G;, X, X, X, X{{ LEi £1) . Thenthevertex vy, from each copy of G, and thevertex x; from each copy of G,
participate to resolve the graph G. Thevertices y, and y., from each copy of G; and the vertices x! from each copy of
G, participate to weakly resolve the graph G, which impliesthat b(G)=r +k =a and b, (G)=r+2k=b.

The following result shows that every pair a,b of positive integerswith a3 k+2(at k+3) and b =at+k (k¥ 0) is
realizable as the weak total metric dimension and fault-tolerant metric dimension of some connected graphs.

Theorem 2.9: For every pair (a,b) of positive integersand for k3 0 with a3 k +2(a? k +3) and b = at+k, there existsa
graph G such that b,,(G)=a and b&G)=b. In particular, b§G) - b, (G)=k.

Proof: We have the following two cases:

Case1l: Whenk =0, Then a= b3 2. For a= 2, consider a path Pa, Of length a+b, then it is straight forward to see that
b&P,.,) = b, (P.,) =a.

Now for a=b>2, attach b-1 pendent verticesto the vertex v, of the path P, Call the resulting graph G. Then
the b-1 pendent vertices and v,,,1 P,,, form a minimum WTR-set as well as a minimum FTRset for G. Thus

atb
b¢G)=b,, (G)=a=b.
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Case 2. When k31. Consider two graphs G, and G, shown in Fig. 4. Make an identification graph
G,=GJG,P,,.X,,v%] by identifying x,1 G,,v,T P,, and x,=v,0 G,. Again identify graphs G, and G; by
G,=G,[G,G,Y,V..,], where y,T G, and v,,,T G,. Make an identification graph G by identifying x,T G, with
k-1 vertices of G;. Let a- k=r3 3. Make the graph G by attaching r-2 pendent verticesto v,1 G, . Thegraph G is
attached with k vertices of path, so k vertices from these graphs, two from G, r-2 pendent vertices form a minimum
WTR-set, which impliesthat b,,(G)=a. Similarly, 2k vertices from G, two vertices from G, and r-2 pendent vertices
form aminimum FTR-set for G, which implies b§ G)=b .

A graph G has fault-tolerant metric dimension equal to the order of G if G isacomplete graph. So by Theorem 4,
b,.(G) £ n and minimum weak total metric dimension is 2 which exists for path but path is not the only graph whose

weak total metric dimension is 2 because Ps with apendent vertex at vz also has aweak total metric dimension 2. Thus
2£b,, (G)En.

Let G, denotesthe cycleon n? 3 vertices. Two verticesu and v of C,, are antipodal if d(u,v)=g . Note that no two

vertices are antipodal in an odd cycle. It was shown that b(C,) = 2. Moreover, two vertices resolve C, if and only if
they are not antipodal [14]. The following result gives the weak and strong total metric dimension of Cy,.

Proposition 2.10: For al n®3and nt 4, b, (G)=3. Moreover, the set W of three verticesformsaWTMB for G, if
and only if no two vertices of W are antipodal. Further, b,(C)=3 fordln®5and nt 6.

Proof: It iseasy to seethat b, (C,) £3. Since b(C,) = 2 so by Theorem 2.8, b,,(C,) 3 3.

Let W bearesolving set for C, which consistsof threeverticesof C,,. If notwo verticesin W areantipodal then by
Lemma 2.1, WisaWTR-set. On the other hand, suppose that W isa WTR-set for C, and we will discuss two cases.

Case 1: (nisodd) Inthis case, the result is obvious since no two vertices are antipodal in an odd cycle.

Case 2: (niseven) Suppose that W has two antipodal vertices of C,.. Then code of every X W andyT V(C,)\W differ
by only one coordinate, so by Lemma 2.1, W isnot aWTR-set, a contradiction.
The proof for the strong total metric dimension of C,, issimilar as the proof of weak total metric dimension of C,,.

From Proposition 2.10, wenoticethat if wehaveaWTMB B, for C,,, then we get metric basis B by removing any
vertex from By,;. On the other hand, by adding one vertex into B, which is not antipodal with any element of B, we get
Bwt. It means that every WTMB B,; for G, contains metric basis B as a proper subset. This suggests the following
guestion: for each WTMB B, of a nontrivial connected graph G, does there exist a metric basis B of G such that

Bl B, ? This question has negative answer in general. For this, we consider a rectangle in a square grid, defined

below, whose metric dimensionis2 and B consistsof endpoints of one side of rectangle[16]. But, itsweak total metric
dimension is 4 and B,y consists of finitely many sets of four points not necessarily containing the metric basis B.

The graph having vertex set V = Z? and edge set E={{u,v}:u- vi {(0,£1),1,0)}} determined by d, metric is
called the square grid, denoted by ( Z,e,) where d,((i,j),(@,/)=[i- it]+|j- j¢| for any two verticesin z2. (d4 metricis
also referred to as city block distance.) Theindex 4 is appropriate because it represents number of points at a distance
one from agiven point with respect to d , metric. The set of vertices (i,j)i Z* with [ilEn and |j|Em is called arectangle,
denoted by Rnm Any subset of (Z,e,) iscalled animage, denoted by | [16].

Lemma 2.11: In arectangleR, n, the endpoints of the sides of animage | (square or rectangle) whose at | east two sides
arelying on the sides of R, ,form aWTR-set for Ry,

Proof: Let u and v be any two vertices of Rym For fixed j;-m<j<m, weconsider alinewx in R, m withw = (n,j),

X = (-n,j). Itisclear that w and x do not form aresolving set for R, msince any two vertices which are symmetric with

respect to the line wx have equal city block distanceto w and x. But they separates the vertices on the horizontal lines

andonthelineswithslopestl. Lety =(n,k); -m£ k€ m and k? j, beany vertex collinear tow. Wenotethat if uand
1654
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v are symmetric with respect to the line wx then |d(u,y) - d(v,y)|<2t wheret isdistance between u and linewx. This
shows that three verticesw, x and y form aresolving set for Ry m.
Now if weadd avertex z=(-n,k) ; -m£ kEm and k? j, intotheset {w,x,y}, then every pair of verticesin Rym

isresolved by at |east two vertices of {w,X,y,z}. So, by Lemma 2.1, the verticesw,x,y and z form aWTRset for Rym
and they arethe endpoints of the sides of animage | whosetwo sideswy and xz arelying onthesidesof R, m A similar
case will ariseif we consider alinewx with w = (i,m) and x = (i,-m) for fixed i; -n<i<n.

Theorem 2.12: b, (R, ) =4.

Proof: It wasshownin[16] that the endpoints of oneside of arectangleform ametric basis. Further, it was shown that
the endpoints of a diagonal do not resolve the vertices in R, m. S0 a WTR-set has at least three points in which two
pointsarethe endpointsof onesideof R, m. Moreover, if thethird point isany point of R, m, then not all theverticesare
having different distances from two of these three vertices. Hence by Lemma 2.1, these three points do not form a
WTR-set. Thisyieldsthat b,,(R, ) 2 4. Also, by Lemma2.11, b, (R, ) £4 . It completes the proof.

Possibly to gain insight into the metric dimension, Chartrand et al. introduced the notion of aresolving partition
and partition dimension. To define the partition dimension, the distance d(v,S) between avertex v of G and Si V(G)
isdefined asmind(v,s). LetP ={S,S,..., $} bean ordered k-partition of V(G) and let v be a vertex of G, then the
k-vector (d(v,S),d(v,S),...,d(v,S,)) iscalled the code, ¢ (v), of v with respect to the partition P. A partition P is
called aresolving partition if for distinct verticesu and v of G, ¢, (u) ! ¢, (v) . The partition dimension of G is the

cardinality of aminimum resolving partition, denoted by pd(G) [4].

Based on the Chartrand et al. method of vertex-partitioning, Javaid et al partition the vertex set of a connected
graph G into classesin such away that any two distinct verticesin G have different distances from at least two classes
of the partition. They referred this partition as afault-tolerent resolving partition of V(G), denoted by P(G) [12].

Now we show that every pair a,b of positive integers with %Ea<b is realizable as the weak total metric and
partition dimension of some connected graphs. Following observation will be useful in the proof of next theorem.

Observation 2.13

() Let P be a fault-tolerant resolving partition of V(G) and u,vi V(G). If d(u,w)=d(v,w) for all vertices
w1 V(G)\{u,v}, then uand v belong to different classesof P.

(i) If Sisaset of k3 2 verticesin a connected graph G such that d(u,x)=d(v,x) foral uyvi Sand xi V(G)- {uv},
then every WTR-set must contain all the k vertices of S.

Theorem 2.14: For every pair (a,b) of positive integers with 5£a<b, there exists a connected graph G such that P(G) =
aand b, (G)=b.

Proof: Let H: vv,...v,,, . beapath on 4+b-avertices. We have the following two cases:

Case 1: (For even 4+b-a) Attach ‘a pendant verticesto one end point v ; (say) and two pendant verticesto each vertex
Vo VooV o of H. Call this caterpillar G. Let uscall ‘a pendant vertices p;; 1£i£a (attached with endpoint v 1), two
> +b-a

withy;; 1£i £%(2+ b- a). Since‘d vertices p;'s are attached with v, so, by Observation 2.13, P(G)3 a.
Now put these ‘@ vertices into sets § Ififa. Further, put v into §, X; 1£i£%(2+ b-a) into S, Vi

1£i £%(2+ b-a) into § and vi; 2£i £3+b-a into §. Lastly, put v,,, , into S. Thus, we have the following

apartition P ={$,S,...S} with
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S ={R.v}.S =(p, x: 1E1 E5@+b- @)}, ={p, y,;: 1LEI£5(2+b- 3)

S,={p,V;: 2£i £3 +b- &,S, ={Py Vaup. o}

znd pjT S; 6£j £a. This partition P of cardinality ‘a is a fault-tolerant resolving partition since every pair of

verticesin G isresolved by at |east two classes of P. Thus, we conclude that P(G) = a.

Thereis one pendent path H,: p,p,...p, in Gv1, one pendent path of order 2in G-v; where 2£i £ %(2+ b-a) and

two pedant paths, one of order 2 and one of order %(2 +b-a) in G- Vi Again, by using Observation 2.13, one
E +b-a

can seethat b, (G)3 b. Takethe set W defined as

1
W={ g,g,g,...,pa,z,pax,y;,1£J£§(2+b- a)}

Then this set isaminimum WTR-set for G of cardinality b. Therefore, b,,(G)=b.

Case 2: (For odd 4+b-a) Attach ‘a’ pendant verticesto one end point v; (say), asingle pendant vertex to V16 and
2

-a)

two pendant verticesto each vertex v, VooV of H. Call this caterpillar G.
5 +b- a

Letuscall ‘a pendant verticesp;; 1£if£a(attached with endpoint v 1), two pendant verticesx;,yi; 1£i £%(1+ b- a)

(attached with v,, V3""‘Vl(3+b.a)) and a single pendant vertex y (attached with V1o ). Make apath H;: p,p,...p, and
2 2

join each x with y;; 1£i £%(1+ b- a). On the same pattern as in Case 1, we can make the following minimum

fault-tolerant resolving partition P ={ $,S,...S} with
.1 o1
S={pvi.S =P, x: 1E1£5(1+b- @}.5 ={p.y.y; :1£1 £5(1+ b- a}
S, ={p, vi: 2£i £3 +b - & ,S;={Ps Vyup,.a}

and p,1 S; 6£j £a andthefollowingisaminimum WTR-set

1
W={R.R. R P2 Pa XYY 1E JE S (14 b- @)}
of cardinality b. Together with this and by using Observations 2.13, one can see that P(G) =aand b,,(G)=b.

APPROXIMATING THE MAXIMUM ORDER OF A GRAPH

The following theorem approximate the maximum order of a connected graph G in terms of diameter and weak
total metric dimension of G.

Theorem 3.1: Let G be a connected graph with weak total metric dimension b,,; and diameter D. Then
[V(G)IE D’ *(D?- 1) - D? +b,, +1

Proof: Let wW={ VoV, ) beaWTMB of Gand U=V (G)\W. We will find the maximum cardinality of U such

that the codes of any two vertices of U differ by at |east one coordinate, al so the codes of verticesof U and W differ by
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at least two coordinates. Notethat, theonly vertex v; hasith coordinate O initscode, each other coordinateisan integer
between 1 and D. Since weak total metric dimension isb,,; and diameter is D, we have bW[DbM'1 possible codes (called

the basis codes) for the elementsin WTMB and D’ possible codes for the elementsin U.
Out of b,,D’** possible basis codes, D have 0 at first coordinate, D * have 0 at second coordinate and so

on and the last D™ " have 0 at b,,th coordinate. From each of these D’w™* possible basis code, we can choose at most
one code. Thus, we have by, such codes out of b,, DMt

Place D’ possible codes for the elements in U column-wise in D columns as: place all those codes in i th
column whose first coordinate is i where 1£i£D. Thus, we have exactly D™ * codes in each column. In one of the

columns, make segments of D codeswith D codesin each segment, then one segment of D codes and exactly one
code from each of the remaining segments do not differ by at least two coordinates from the codes of basis vertices,

thus we are left with (D°* % - D)(D - 1) codes from this column and D’ *- 1 codes from each of the remaining D-1
columns which differ by at least one coordinate within the vertices of U and differ by at least two coordinates from the
codes of basis vertices of W. Hence

|UIE(D™ *- D)(D- 1)+ (D™ - 1)(D- 1)
Since V(G)=WE U, sothe maximum order of G isat most D° *(D?- 1) - D? +b,, +1.
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