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Abstract: A set of vertices W is called a weak total resolving, simply written as WTR-set, if for every pair of 
distinct vertices x,y in G with x∈V(G)\W and y ∈W, there is a vertex w∈W\{y} such that d(x,w) d(y,w)≠ . A 
set of vertices W is called a strong total resolving, written as STR-set, if for every pair of distinct vertices x,y 
in G, there is a vertex w in W such that d(x,w) d(y,w)≠  for x,y w≠ . The cardinality of a minimum WTR-set 
and a minimum STR-set is called the weak total metric dimension and strong total metric dimension of G, 
denoted by βwt(G) and βst(G), respectively. In this paper, we introduce total metric dimension of graphs and 
study its relationship with metric dimension and related parameters. We give some realizable results and the 
maximum order of a connected graph G in terms of diameter and weak total metric dimension of G has also 
been investigated.  
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INTRODUCTION 
 
 Metric dimension is a parameter that has appeared in various applications of graph theory, as diverse as, 
pharmaceutical chemistry [1, 3], robot navigation [15], combinatorial optimization [19] and sonar and coast guard 
Loran [20], to name a few. A basic problem in chemistry is to provide mathematical representations for a set of 
chemical compounds in a way that gives distinct representations to distinct compounds. As described in [1, 3], the 
structure of a chemical compound can be represented by a labeled graph whose vertex and edge labels specify the atom 
and bond types, respectively. Thus, a graph-theoretic interpretation of this problem is to provide representations for 
the vertices of a graph in such a way that distinct vertices have distinct representations. 
 We refer [5] for general graph theoretic notations and terminology not described in this paper. We consider 
simple connected graphs G with vertex set V(G) and edge set E(G).  Motivated by the problem of uniquely determining 
the location of an intruder in a network, Slater [20] introduced the concept of metric dimension which was also 
independently studied by Harary and Melter [8]. Applications of this invariant to the navigation of robots in networks 
are studied by Khuller et al. [15], to chemistry by Chartrand et al. [3] and to problem of pattern recognition and image 
processing, some of which involve the use of hierarchical data structures are studied by Melter and Tomescu [16]. 
Gary and Johnson [7] noted that to determine the metric dimension of a graph is NP-hard, however, its explicit 
construction was given by Khuller et al. [14]. For more results about the notion of metric dimension and its 
applications, we refer to a nice survey by Saenpholphat and Zhang [3, 6, 8-13, 17, 18]. 
 The distance, d(u,v), between two vertices u and v in G is the minimum number of edges in a u-v path. The 
diameter of G, denoted by D, is the largest distance between two vertices in V(G). A vertex w resolves two vertices u 
and v if d(u,w) d(v,w)≠ . A vertex set W V(G)⊆  is said to be a resolving set for G if for every two distinct vertices u 
and v in V(G), there is a vertex w in W that resolves u and v. The minimum cardinality of a resolving set of G is called 
the metric dimension of G and is denoted by β(G). A resolving set of order β(G) is called a metric basis  of G [3]. 
 The code, cW(v), of a vertex v∈V(G) with respect to a set 1 kW = { w , ,w }…  is the k-tuple 

1 2 k(d(v,w),d(v,w ), ,d(v,w ))… . Equivalently,  the  set W is a resolving set if for every two vertices v and w in V(G), we  
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Fig. 1: (a) Graph G with resolving deficiency, (b) The resulting graph G′ 
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Fig. 2: (a) Graph with resolving deficiency, (b) Graph after removing the resolving deficiency 
 
have W Wc (v) c (w)≠ . From the definition of metric dimension, it can be observed that the property of a given set W of 

vertices of a graph G to be a resolving set of G can be verified by investigating only the vertices of V(G)\W. This is 
because every vertex w∈W is the only vertex of G whose distance from w is 0. A resolving set W for G is called a 
weak total resolving, simply written as WTR-set, if for every pair of distinct vertices x,y in G with x∈V(G)\W and 
y∈W, there is a vertex x∈W\{y} such that d(x,w) d(y,w)≠ . It is clear from the definition that if V(G)\W is an empty 
set, then the set of vertices V(G) is a WTR-set. The cardinality of a minimum WTR-set is called the it weak total 
metric dimension of G, denoted by βwt(G). A WTR-set of cardinality βwt(G) is called a weak total metric basis 
(WTMB) of G. For a path Pn and a complete graph Kn of order n, wt n( P ) = 2β  and wt n(K ) = nβ . 

 A resolving set for G is called a strong total resolving, written as STR-set, if for every pair of distinct vertices x,y 
in G, there is a vertex w in W such that d(x,w) d(y,w)≠  for x,y w≠ . The minimum cardinality of an STR-set is called 

the strong total metric dimension of G, denoted by βst(G). An STR-set for G of cardinality βst(G) is called a strong total 
metric basis  (STMB) of G. STR-set may or may not exist for a graph G. For example, STR-set does not exist for a 
complete graph on at least three vertices. We say that a graph G is totally resolved if there exists an STR-set for G. 
 In a graph G, if WTR-set exists but there is no subset of V(G) which admits the condition of STR-set, then we say 
that there is a deficiency to resolve the graph G totally and is called the resolving deficiency in G. However, this 
resolving deficiency can be removed by adding exactly one pendent vertex with each of those vertices of a resolving 
set which do not admit the condition of STR-set. The number of vertices added in G to remove the resolving 
deficiency is called the resolving deficiency number of G, denoted by η(G) and the vertices used for this purpose are 
called the supporting vertices. After removing the resolving deficiency from G, the resulting graph will be denoted by 
G′ and we say that the graph G′ has strong metric dimension βst(G′) with resolving deficiency number η(G). 
 
Example 1.1: Consider the graph G shown in Fig. 1a. One can see that for the graph G, the set {w1,w6} is a minimum 
resolving set and the set {w1,w6,w8} is a minimum WTR-set. But, there is no subset of V(H) which admits the 
condition of STR-set because the vertices w6 and w8 have the same distances to all the vertices of G. So there is the 
resolving deficiency in G. However, if we use the supporting vertex x (Fig. 1b), then this deficiency has been removed 
from G and the set {x,w1,w6} is a minimum STR-set for G′. Hence β(G) = 2, βwt(G) = 3 and βst(G′) = 3 with η(G) = 1.  
 Elements of metric basis were referred to as censors in an application [2]. In an application, if one of the censors 
does not work properly, we will not have enough information to deal with the intruder (fire, thief, etc). Consider a 
graph G with two parts connected by a single vertex shown in Fig. 2a. 
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 One can assume G as a model of a housing complex with two sectors S1 and S2 of parallel housing rows. Suppose 
that, for the sake of the security of the complex from intruder, the complex management wants to place the smallest 
number of censors (detecting devices for arms) in the complex in such a way that all the locations in the complex are 
uniquely detected by their distances to the censors. Clearly, it is shown in Fig. 2a that any four locations from exactly 
four parallel housing rows in each sector is a best selection of smallest number of locations to place the censors. With 
out loss of generality, we assume that the censors are placed at the locations 1,2,4 and 5 in the sector S1 and at the 
locations 6,8,14 and 15 in sector S2. This placement of the censors will assure the security of the whole complex only 
if all the censors work properly and the collection S = {1,2,4,5,6,8,14,15} is called a resolving set for G. Now the 
problem is that if one of the censors or any two censors stop detecting the intruder due to any impenetrable problem, 
then how to assure the safety of the insecured pairs of locations of the complex? For example, if the censor placed at 
location 2 stops working, then the location 2 and 3 can not uniquely detected by their distances to any of the remaining 
censors  or  if  the  censors  placed  at the locations 8 and 15 are collapsed, then the location 8 and 9,8 and 10,9 and 10, 
13 and 14, 14 and 15, 13 and 15 all have the same distances to all the remaining censors and hence are not uniquely 
detected  by  their  distances.  In  the  context  of  resolvability,  we  say  that  the  collection S resolves the graph G but 
not totally resolves G. The solution of this kind of problems is the origin of introducing the concept of total 
resolvability in graphs. 
 Note that, if we place two more censors at the locations 3 and 7, then the collection T = S∪{3,7} of censors 
assures that every pair of locations uniquely detected by their distances to some censors even any of the censors does 
not work and is called a WTR-set for G. But, still there is a deficiency in uniquely determining some pairs of location 
where the censors placed. This deficiency is that if the censors placed at locations, say 2 and 5, stopped working 
simultaneously, then the locations 2 and 5 are insecured and cannot be uniquely determined by their distances to any of 
the remaining censors. This kind of problem happen not only with the censors placed at the locations 2 and 5, but also 
with the censors placed at the locations {1,2,4,5} and the locations {6,8,14,15}. In fact, this is the resolving deficiency 
in G. However, this deficiency can be removed by attaching exactly one censor to each of the censors placed at 
locations {1,2,4,5,6,8,14,15}. Then the resulting collection U = S∪{9,10,11,13,16,17,18,19} completely assures the 
safety of the complex. In the context of resolvability, we call the collection U, an STR-set for G with the supporting 
vertices 16, 17, 18 and 19 (Fig. 2b). 
 

MAIN RESULTS 
 
 In this section, we study the relationship of a WTR-set and an STR-set with a resolving and a fault-tolerant 
resolving set. Also, we give some realizable results. In the case of WTR-set, the following result holds. 
 
Lemma 2.1: A resolving set W for a graph G is a WTR-set if and only if the code of every vertex w∈W differ by at 
least two coordinates from the code of each vertex v∈V(G)\W.  
 
Proof: Suppose that W is a WTR-set for G. Contrarily suppose that the code of a vertex, say wi, of W and a vertex 
y∈V(G)\W differ by only one coordinate. Since the code cW(wi) of wi has 0 at ith place, so the codes cW(wi) and cW(y) 
differ by ith coordinate only, a contradiction. 
 Conversely, for every x∈W  and every y∈V(G)\W, the codes cW(x) and cW(y) differ by at least two coordinates, 
which means that W a WTR-set. 
 Two vertices u and v in a graph G are said to be distance similar if d(u,w)=d(v,w)  for all w∈V(G)\{u,v}. A 
subset U of V(G) is called a distance similar set if every two vertices in U are distance similar. By all of the above 
definitions, the following remark and proposition holds: 
 
Remark 2.2:  
(a) If u and v are distance similar vertices in G and W be any resolving set for G, then u∈W or v∈W. Moreover, if 

u∈W, then (W\{u}) {v}∪  also resolves G. 
(b) If U be a distance similar set of cardinality l, then any resolving set for G contains l-1 elements of U. Any 

WTR-set for G contains all elements of U. 
(c) A graph G has non zero resolving deficiency if and only if there exist a distance similar set in G. 
(d) An STR-set for G exists if and only if no two vertices of the graph are distance similar.  
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Fig. 3: The graph G 
 
Proposition 2.3: A WTR-set W for a graph G is an STR-set if every pair x,y of vertices in W is resolved by some 
vertex of W other than x and y. 
 Now if a graph G contains distance similar vertices then by Remark 2.2(d), STR-set does not exist for G. So there 
is a resolving deficiency in G and in order to remove this resolving deficiency, η(G) number of supporting vertices are 
needed. Thus we have the following proposition: 
 
Proposition 2.4: Let G be a graph. If there are r distance similar sets 1 2 rU , U , ,U…  in G, then st i( G ) | U | (G) r′β ≥ +β −∑ , 

where G′ is the graph obtained from G after removing the resolving deficiency. Moreover, this bound is sharp.  
 
Proof: Since every resolving set contains i| U | r−∑  vertices from r distance similar sets 1 2 rU , U , ,U… , by Remark 

2.2(b). So, at least i| U | r−∑  supporting vertices required to remove the resolving deficiency for a resolving set of 

cardinality β(G) to be admitted the condition of STMB of the graph G′. Further, if we let G = Kn (complete graph on n 
vertices), then st ( G ) = 2 n 2′β −  with ( G ) = n 1η − .  

 A resolving set W of a graph G is said to be fault-tolerant (simply written as FTR-set) if W\{w}, for each w∈W, 
is also a resolving set for G. The fault -tolerant metric dimension of G is the minimum cardinality of an FTR-set, 
denoted by β′(G). An FTR-set of order β′(G) is called a fault-tolerant metric basis  (FTMB) [12]. From the definitions 
of FTR-set and WTR-set, following lemma follows: 
 
Lemma 2.5: A WTR-set W for a graph G is FTR if and only if every pair x,y of vertices in G such that x,y∉W is 
resolved by at least two vertices of W.  
 
Proof: Suppose that W is an FTR-set for G. Assume contrarily that two vertices x and y in G are resolved by only one 
vertex w of W, then W\{w} is not a resolving set since x and y have same codes with respect to W\{w}, a 
contradiction. 
 Now suppose that every pair of vertices x,y in G, such that x,y∉W is resolved by at least two vertices of W. Since 
W is a WTR-set, W\{w}, for each w in W, is also a resolving set for G, by definition. 
 
Example 2.6: Consider the graph G given in Fig. 3. Let 1 1 8 10W = { w , w , w } . Then the codes of the vertices of G with 

respect to W1 are:, which implies that W1 is a WTR-set for G. But, W1 is not an FTR-set because W1\{w1} does not 

resolve G. If we add the vertex w3 into W 1, then the set 2 1 3W = W {w }∪  is a WTR-set as well as an FTR-set for G. Also, 

there is no 2-element subset of V(G) which weakly resolves all the vertices of G and there is no FTR-set of cardinality 
less than 4 for G, which implies that wt( G ) = 3β  and ( G ) = 4′β .  

By Lemmas 2.1 and 2.5, we have the following result: 
 
Lemma 2.7: A resolving set W for a graph G is an STR-set if and only if (i) W is a WTR-set for G and (ii) for every 
pair x,y of vertices in W, there exists a w {x,y}∈/  in W which resolves x and y.  
 
Proof: Suppose W is an STR-set. Then, by definition, for every pair vertices in G, in particular x∈V(G)\W and y∈W, 
there is a vertex w in W other than y such that d(x,w) d(y,w)≠ , which implies that W is a WTR-set. Also, every pair of 
vertices in W is resolved by some other vertex of W, which implies (ii). 
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Fig. 4: Graphs to be identified 
 
Conversely, if (i) and (ii) hold, then by Proposition 2.3, W is an STR-set.  
 Now we show that every pair a,b of posit ive integers with a≥k and b = a+k (k>0) is realizable as the metric 
dimension and weak total metric dimension some connected graphs. 
 
Theorem 2.8: For any triplet (a,b,k) of positive integers with a≥k and b = a+k, there exists a graph G such that β(G) = 
a and βwt(G) = b. In particular, wt(G) ( G ) = kβ − β .  

 
Proof: We have the following two cases: 
 
Case 1: (When a = k) For k = 1, consider a path Pa+b of length a+b. Then, clearly, β(G) = a and βwt(G) = b. 
 For k≥2, attach the graph G1 shown in Fig. 4 with the path Pa+b by identifying the vertex y4 of G1 and the vertices 

1 2 av , v , , v…  of Pa+b. Call the resulting graph G. Note that, there are a copies of Gi in G. Call the vertices of the ith copy 

of G1, i i i i
1 2 3 4y , y , y , y ( 1 i a)≤ ≤ . Then the vertex i

1y  from each copy of G1 participates to resolve the graph G and the 

vertices i
1y  and i

3y  from each copy of G1 participate to weakly resolve G, which implies that β(G) = a and 

wt( G ) = 2 a = bβ . 

 
Case 2: (When a>k) Consider the graph G2  shown in Fig. 4. Make an identification graph 3 3 2 a b 4 1G = G [ G , P ,x , v ]+  by 

identifying 4 2x G∈ , 1 a bv P +∈  and 4 1 3x = v G∈ . Again identify graphs G1 and G3 by 4 4 1 3 4 a bG = G [ G , G , y , v ]+ , where 

4 1y G∈  and a b 3v G+ ∈ . Let a k = r 1− ≥ . Now, identify 4 1y G∈  with k-1 vertices of the path in graph G4. Also, identify 

4 2x G∈  with r-1 vertices of the path in graph G4 . Call the resulting graph G. Note that, there are k copies of G1 in G. 

Call the vertices of the ith copy of G1, i i i i
1 2 3 4y , y , y , y ( 1 i k)≤ ≤ . Also, there are r copies of G2 in G. Call the vertices of the 

ith copy of G2, i i i i
1 2 3 4x , x , x , x ( 1 i r)≤ ≤ . Then the vertex i

1y  from each copy of G1 and the vertex i
1x  from each copy of G2 

participate to resolve the graph G. The vertices i
1y  and i

3y  from each copy of G1  and the vertices i
1x  from each copy of 

G2 participate to weakly resolve the graph G, which implies that ( G ) = r k = aβ +  and wt( G ) = r 2 k = bβ + .  

 The following result shows that every pair a,b of positive integers with a k 2(a k 3)≥ + ≠ +  and b = a+k (k≥0) is 

realizable as the weak total metric dimension and fault-tolerant metric dimension of some connected graphs. 
 
Theorem 2.9: For every pair (a,b) of positive integers and for k≥0 with a k 2(a k 3)≥ + ≠ +  and b = a+k, there exists a 

graph G such that wt( G ) = aβ  and ( G ) = b′β . In particular, wt(G) ( G ) = k′β −β .  

 
Proof: We have the following two cases: 
 
Case 1: When k = 0, Then a = b≥2. For a = 2, consider a path Pa+b of length a+b, then it is straight forward to see that 

a b wt a b(P ) = (P ) = a+ +′β β . 

 Now  for  a = b>2,  attach  b-1 pendent vertices to the vertex v1 of the path Pa+b. Call the resulting graph G. Then 
the b-1 pendent vertices and a b a bv P+ +∈  form a minimum WTR-set as well as a minimum FTR-set for G. Thus 

wt(G)= ( G ) = a = b′β β . 
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Case 2: When k≥1. Consider two graphs G1 and G2 shown in Fig. 4. Make an identification graph 

3 3 2 a b 4 1G = G [ G , P ,x , v ]+  by identifying 4 2x G∈ , 1 a bv P +∈  and 4 1 3x = v G∈ . Again identify graphs G1 and G3 by 

4 4 1 3 4 a bG = G [ G , G , y , v ]+ , where 4 1y G∈  and a b 3v G+ ∈ . Make an identification graph G5 by identifying 4 2x G∈  with 

k-1 vertices of G4. Let a k = r 3− ≥ . Make the graph G by attaching r-2 pendent vertices to 2 5v G∈ . The graph G2 is 

attached with k vertices of path, so k vertices from these graphs, two from G1 , r-2 pendent vertices form a minimum 
WTR-set, which implies that wt( G ) = aβ . Similarly, 2k vertices from G2, two vertices from G1 and r-2 pendent vertices 

form a minimum FTR-set for G, which implies ( G ) = b′β . 
 A graph G has fault-tolerant metric dimension equal to the order of G if G is a complete graph. So by Theorem 4, 

wt(G) nβ ≤  and minimum weak total metric dimension is 2 which exists for path but path is not the only graph whose 

weak total metric dimension is 2 because P5 with a pendent vertex at v3 also has a weak total metric dimension 2. Thus 
wt2 (G) n≤ β ≤ . 

 Let Cn denotes the cycle on n ≥3 vertices. Two vertices u and v of Cn are antipodal if 
n

d(u ,v )=
2

. Note that no two 

vertices are antipodal in an odd cycle. It was shown that n(C ) = 2β . Moreover, two vertices resolve Cn if and only if 

they are not antipodal [14]. The following result gives the weak and strong total metric dimension of Cn. 
 
Proposition 2.10: For all n≥3 and n 4≠ , wt n( C ) = 3β . Moreover, the set W of three vertices forms a WTMB for Cn if 

and only if no two vertices of W are antipodal. Further, st n(C ) = 3β  for all n≥5 and n 6≠ .  

 
Proof: It is easy to see that wt n(C ) 3β ≤ . Since n(C ) = 2β  so by Theorem 2.8, wt n(C ) 3β ≥ .  

 Let W be a resolving set for Cn which consists of three vertices of Cn. If no two vertices in W are antipodal then by 
Lemma 2.1, W is a WTR-set. On the other hand, suppose that W is a WTR-set for Cn and we will discuss two cases. 
 
Case 1: (n is odd) In this case, the result is obvious since no two vertices are antipodal in an odd cycle. 
 
Case 2: (n is even) Suppose that W has two antipodal vertices of Cn. Then code of every x∈W and y∈V(Cn)\W differ 
by only one coordinate, so by Lemma 2.1, W is not a WTR-set, a contradiction. 
The proof for the strong total metric dimension of Cn is similar as the proof of weak total metric dimension of Cn.  
 From Proposition 2.10, we notice that if we have a WTMB Bwt for Cn, then we get metric basis B by removing any 
vertex from Bwt. On the other hand, by adding one vertex into B, which is not antipodal with any element of B, we get 
Bwt. It means that every WTMB Bwt for Cn contains metric basis B as a proper subset. This suggests the following 
question: for each WTMB Bwt of a nontrivial connected graph G, does there exist a metric basis B of G such that 

wtB B⊂ ? This question has negative answer in general. For this, we consider a rectangle in a square grid, defined 

below, whose metric dimension is 2 and B consists of endpoints of one side of rectangle [16]. But, its weak total metric 
dimension is 4 and Bwt consists of finitely many sets of four points not necessarily containing the metric basis B. 
 The graph having vertex set V = Z2 and edge set E {{u,v}:u v {(0, 1),( 1,0)}}= − ∈ ± ±  determined by d4 metric is 

called the square grid, denoted by 2
4( Z , )ε  where 4d ((i,j),(i,j))=|i i | | j j |′ ′ ′ ′− + −  for any two vertices in Z2. (d4 metric is 

also referred to as city block distance.) The index 4 is appropriate because it represents number of points at a distance 
one from a given point with respect to d 4 metric. The set of vertices 2(i,j) Z∈  with |i|≤n and |j|≤m is called a rectangle, 
denoted by Rn,m. Any subset of 2

4( Z , )ε  is called an image, denoted by | [16]. 

 
Lemma 2.11: In a rectangle Rn,m, the endpoints of the sides of an image | (square or rectangle) whose at least two sides 
are lying on the sides of Rn,m form a WTR-set for Rn,m.  
 
Proof:  Let  u  and  v  be  any  two  vertices  of  Rn,m. For  fixed  j; -m<j<m, we consider a line wx in Rn,m with w = (n,j), 
x = (-n,j). It is clear that w and x do not form a resolving set for Rn,m since any two vertices which are symmetric with 
respect to the line wx have equal city block distance to w and x. But they separates the vertices on the horizontal lines 
and on the lines with slopes ±1. Let y = (n,k); m k m− ≤ ≤  and k j≠ , be any vertex collinear to w. We note that if u and  
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v are symmetric with respect to the line wx then |d(u,y) d(v ,y) |<2− τ  where τ is distance between u and line wx. This 
shows that three vertices w, x and y form a resolving set for Rn,m. 
 Now if we add a vertex z = ( n,k)− ; m k m− ≤ ≤  and k j≠ , into the set {w,x,y}, then every pair of vertices in Rn,m 
is resolved by at least two vertices of {w,x,y,z}. So, by Lemma 2.1, the vertices w,x,y and z form a WTR-set for Rn,m 
and they are the endpoints of the sides of an image | whose two s ides wy and xz are lying on the sides of Rn,m. A similar 
case will arise if we consider a line wx with w = (i,m) and x = (i,-m) for fixed i; -n<i<n. 
 
Theorem 2.12: wt n,m(R ) = 4β .  

 
Proof: It was shown in [16] that the endpoints of one side of a rectangle form a metric basis. Further, it was shown that 
the endpoints of a diagonal do not resolve the vertices in Rn,m. So a WTR-set has at least three points in which two 
points are the endpoints of one side of Rn,m. Moreover, if the third point is any point of Rn,m, then not all the vertices are 
having different distances from two of these three vertices. Hence by Lemma 2.1, these three points do not form a 
WTR-set. This yields that wt n,m(R ) 4β ≥ . Also, by Lemma 2.11, wt n,m(R ) 4β ≤ . It completes the proof. 

 Possibly to gain insight into the metric dimension, Chartrand et al. introduced the notion of a resolving partition 
and partition dimension. To define the partition dimension, the distance d(v,S) between a vertex v of G and S V(G)⊆  
is defined as min d(v,s). Let Π  = 1 2 k{S , S , , S }…  be an ordered k-partition of V(G) and let v be a vertex of G, then the 

k-vector 1 2 k(d(v,S),d(v,S), ,d(v,S ))…  is called the code, cΠ(v), of v with respect to the partition Π. A partition Π  is 

called a resolving partition if for distinct vertices u and v of G, c (u) c (v)Π Π≠ . The partition dimension of G is the 

cardinality of a minimum resolving partition, denoted by pd(G) [4]. 
 Based on the Chartrand et al. method of vertex-partitioning, Javaid et al partition the vertex set of a connected 
graph G into classes in such a way that any two distinct vertices in G have different distances from at least two classes 
of the partition. They referred this partition as a fault-tolerent resolving partition of V(G), denoted by P(G) [12]. 
 Now we show that every pair a,b of positive integers with 5≤a<b is realizable as the weak total metric and 
partition dimension of some connected graphs. Following observation will be useful in the proof of next theorem. 
 
Observation 2.13 
(i) Let Π  be a fault-tolerant resolving partition of V(G) and u,v∈V(G). If d(u,w)=d(v,w)  for all vertices 

w V(G)\{u,v}∈ , then u and v belong to different classes of Π. 

(ii) If S is a set of k≥2 vertices in a connected graph G such that d(u,x)=d(v,x)  for all u,v ∈S and x V(G) {u,v}∈ − , 
then every WTR-set must contain all the k vertices of S.  

  
Theorem 2.14: For every pair (a,b) of positive integers with 5≤a<b, there exists a connected graph G such that P(G) = 
a and wt( G ) = bβ .  
 
Proof: Let H: 1 2 4 b av v v + −…  be a path on 4+b-a vertices. We have the following two cases: 
 
Case 1: (For even 4+b-a) Attach ‘a’ pendant vertices to one end point v 1 (say) and two pendant vertices to each vertex 

2 3 1 (4 b a)
2

v , v , ,v
+ −

…  of H. Call this caterpillar G. Let us call ‘a’ pendant vertices p i; 1≤i≤a (attached with endpoint v 1), two 

pendant vertices xi, yi; 
1

1 i (2 b a)
2

≤ ≤ + −  (attached with 2 3 1 (4 b a)
2

v , v , ,v
+ −

… ). Make a path 1 1 2 aH : p p p…  and join each xi  

with y i; 
1

1 i (2 b a)
2

≤ ≤ + − . Since ‘a’ vertices p i's are attached with v1, so, by Observation 2.13, P(G)≥a. 

 Now put these ‘a’ vertices into sets Si;  1≤i≤a. Further, put v1 into S1,  xi; 
1

1 i (2 b a)
2

≤ ≤ + −  into S2,  yi; 

1
1 i (2 b a)

2
≤ ≤ + −  into S3 and vi; 2 i 3 b a≤ ≤ + −  into S4. Lastly, put 4 b av + −  into S5. Thus, we have the following 

a-partition 1 2 a= { S , S , S }Π …  with 
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1 1 1 2 2 i 3 3 i

4 4 i 5 5 4 b a

1 1
S ={p ,v} ,S ={p , x : 1 i (2 b a)},S ={p , y : 1 i (2 b a)}

2 2
S ={p , v : 2 i 3 b a},S ={p , v }+ −

≤ ≤ + − ≤ ≤ + −

≤ ≤ + −
 

 
znd j jp S∈ ; 6 j a≤ ≤ . This partition Π of cardinality ‘a’ is a fault -tolerant resolving partition since every pair of 

vertices in G is resolved by at least two classes of Π. Thus, we conclude that P(G) = a. 

 There is one pendent path 1 1 2 aH : p p p…  in G-v1, one pendent path of order 2 in G-vi where 
1

2 i (2 b a)
2

≤ ≤ + −  and 

two pedant paths, one of order 2 and one of order 
1

(2 b a)
2

+ −  in 1 (4 b a)
2

G v
+ −

− . Again, by using Observation 2.13, one 

can see that wt(G) bβ ≥ . Take the set W defined as  

 

1 3 4 a 2 a j j

1
W = { p , p , p , ,p ,p , x , y ; , 1 j (2 b a)}

2− ≤ ≤ + −…  

 
Then this set is a minimum WTR-set for G of cardinality b. Therefore, wt( G ) = bβ . 

 
Case 2: (For odd 4+b-a) Attach ‘a’ pendant vertices to one end point v1 (say), a single pendant vertex to 1( 5 b a )

2

v
+ −

 and 

two pendant vertices to each vertex 2 3 1 (3 b a)
2

v , v , ,v
+ −

…  of H. Call this caterpillar G. 

 Let us call ‘a’ pendant vertices p i; 1≤i≤a (attached with endpoint v 1), two pendant vertices xi, y i; 
1

1 i (1 b a)
2

≤ ≤ + −  

(attached with 2 3 1 (3 b a)
2

v , v , ,v
+ −

… ) and a single pendant vertex y (attached with 1( 5 b a )
2

v
+ −

). Make a path 1 1 2 aH : p p p…  and 

join each xi with yi; 
1

1 i (1 b a)
2

≤ ≤ + − . On the same pattern as in Case 1, we can make the following minimum 

fault-tolerant resolving partition 1 2 a= { S , S , S }Π …  with  

 

1 1 1 2 2 i 3 3 i

4 4 i 5 5 4 b a

1 1
S ={p ,v} ,S ={p , x : 1 i (1 b a)},S = { p , y , y :1 i (1 b a)}

2 2
S ={p , v : 2 i 3 b a},S ={p , v }+ −

≤ ≤ + − ≤ ≤ + −

≤ ≤ + −
 

 
and j jp S∈ ; 6 j a≤ ≤  and the following is a minimum WTR-set  
 

1 3 4 a 2 a j j

1
W = { p , p , p , ,p ,p , x , y , y ; 1 j (1 b a)}

2− ≤ ≤ + −…  

 

of cardinality b. Together with this and by using Observations 2.13, one can see that P(G) = a and wt( G ) = bβ . 
 

APPROXIMATING THE MAXIMUM ORDER OF A GRAPH 
 

 The following theorem approximate the maximum order of a connected graph G in terms of diameter and weak 
total metric dimension of G. 
 

Theorem 3.1: Let G be a connected graph with weak total metric dimension βwt and diameter D. Then  
 

2 2 2wt
wt|V(G)| D (D 1) D 1β −≤ − − +β +  

 
Proof: Let 1 2 wt

W = { v , v , , v }β…  be a WTMB of G and U = V ( G ) \ W . We will find the maximum cardinality of U such 

that the codes of any two vertices of U differ by at least one coordinate, also  the codes of vertices of U and W differ by  
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at least two coordinates. Note that, the only vertex v i has ith coordinate 0 in its code, each other coordinate is an integer 

between 1 and D. Since weak total metric dimension is βwt and diameter is D, we have 1wt
wtD

β −β  possible codes (called 

the basis codes) for the elements in WTMB and wtDβ  possible codes for the elements in U. 

 Out of 1wt
wtD

β −β  possible basis codes, 1wtDβ −  have 0 at first coordinate, 1wtDβ −  have 0 at second coordinate and so 

on and the last 1wtDβ −  have 0 at βwtth coordinate. From each of these 1wtDβ −  possible basis code, we can choose at most 

one code. Thus, we have βwt such codes out of 1wt
wtD

β −β . 

 Place wtDβ  possible codes for the elements in U column -wise in D columns as: place all those codes in i th 

column whose first coordinate is i where 1≤i≤D. Thus, we have exactly 1wtDβ −  codes in each column. In one of the 

columns, make segments of 1wtDβ −  codes with D codes in each segment, then one segment of D codes and exactly one 
code from each of the re maining segments do not differ by at least two coordinates from the codes of basis vertices, 

thus we are left with 2wt(D D)(D 1)β − − −  codes from this column and 1wtD 1β − −  codes from each of the remaining D-1 
columns which differ by at least one coordinate within the vertices of U and differ by at least two coordinates from the 
codes of basis vertices of W. Hence  
 

2 1wt wt| U | (D D)(D 1) (D 1)(D 1)β − β −≤ − − + − −  
 

Since V ( G ) = W U,∪  so the maximum order of G is at most 2 2 2wt
wtD (D 1) D 1β − − − +β + .  
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