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A New Approach for Solving Partial Differential Equations 
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Abstract: In this paper, a stable method is proposed for solving time dependent partial differential
equations in large domains using radial basis functions. In this new approach, a domain decomposition 
scheme is applied by using collocation points and thin plate splines. The scheme works in a similar fashion 
as finite difference methods. The merit of the proposed approach is that it is capable to reduce condition 
number of the matrices resulting from discretization of the equations and easily overcome the difficulty 
arising in solving complicated algebraic systems. The new method is applied to linear hyperbolic telegraph 
and nonlinear Klein-Gordon equations and the obtained results confirm the accuracy and efficiency of this 
method. The results of numerical experiments are presented with and without using domain decomposition 
method.
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INTRODUCTION

The Radial Basis Function (RBF) method has been 
actively used for solving Partial Differential Equations 
(PDEs) [1-3]. The RBF method for time dependent
PDEs  enjoy  large  advantages  in  accuracy  over
other flexible, but low order methods, such as finite
differences, finite volumes and finite elements.
However, RBF method shares the ease of
implementation and flexibility of these lower order
methods [4]. The traditional RBFs are globally defined 
functions which result in a full resultant coefficient 
matrix. In addition, in large domains, we require a large 
number of collocation points to get desirable accuracy, 
but we must also mention that the matrices which result 
from  the  discretization  of  the  equations  are  usually 
ill-conditioned, in this case. This hinders the application 
of the RBFs to solve large domain problems due to 
severe ill-conditioning of the coefficient matrix. 
         In this article, to overcome this ill-conditioning
conditioning problem in large domains and to get good 
accuracy in a stable structure, a new approach of the 
RBF method is constructed based on decomposition the 
domain to a few suitable subdomains. In this approach 
we use the finite-difference methods and employ the 
collocation method and approximate the solution
directly by thin plate spline RBFs [5]. This structure 
without domain decomposition, used by Zerroukat et al. 
for solving heat transfer problem [6] and by Dehghan 
and Shokri for solving hyperbolic telegraph equation 
[2] and non-linear Klein-Gordon equation [7]. Here, we 
gain   insight  in  one  dimension  before  proceeding  to

higher dimensions. The implementation and complexity 
of RBF methods in higher dimensions are essentially 
the same as in one dimension. 

The layout of the article is as follows: In Section 2 
we show that how the RBFs is used to approximate the 
solution. In Section 3 we apply the proposed method on 
time dependent PDEs in linear and nonlinear cases. The 
results of numerical experiments are presented in
Section 4. Section 5 is dedicated to a brief conclusion. 
The numerical results are obtained by using MATLAB 
programming.

RADIAL BASIS FUNCTION APPROXIMATION

In the interpolation of the scattered data using 
radial basis functions the approximation of a function 
u(x) at the centers X = {x1,…,xN}, may be written as a 
linear combination of N RBFs; usually it takes the
following form:

( ) ( ) ( )
QN

u,X j j k k
j 1 k 1

s x x x p x
= =

= α φ − + β∑ ∑ (2.1)

Here, Q denotes the dimension of the polynomial 
space d

m 1( )−π  ,  p1,…,pQ denote  a  basis of d
m 1( )−π  ,

x = {x1, x2,…,xd}, d is the dimension of the problem, 
α’s and β’s are coefficients to be determined, φ is the 
RBF. Some well-known RBFs are listed in Table 1. 

To cope with additional degrees of freedom, the 
interpolation conditions
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Table 1: Some well-known functions that generate RBFs
Name of function Definition

Multiquadrics (MQ) ( ) 2 2
2x x cφ = +

Inverse multiquadrics (IMQ) ( )
1

2 2
2x x c

−
 φ = + 
 

Gaussian (GA) ( ) 2
2x exp c x φ = −  

Thin plate splines (TPS) ( ) ( ) 2kk 1
2 2x 1 x log x+φ = −

Conical splines ( ) 2k 1
2x x +φ =

( ) ( )u,X j js x u x ,         1 j N= ≤ ≤ (2.2)

are completed by the additional conditions

( )
N

j k j
j 1

p x 0,        1 k Q
=

α = ≤ ≤∑ (2.3)

Solvability of this system is therefore equivalent to 
solvability of the system 

,X
T

A P u X
0P 0

φ   α 
  =       β    

(2.4)

where

( )( ) N N
,X j kA x x  ×
φ = φ − ∈  and ( )( ) N Q

k j P p x ×= ∈

This last system is obviously solvable if the
coefficient matrix on the left-hand side is invertible. 
Equation (2.1) can be written without the additional 
polynomial ( )1

Q p xk kk∑ = . In that case, φ must be
unconditionally positive definite to guarantee the
solvability of the resulting system (e.g. Gaussian or 
inverse multiquadrics). However ( )1

Q p xk kk∑ =  is usually 
required when φ is conditionally positive definite, i.e. 
when φ has a polynomial growth towards infinity. For 
instance, suppose φ is thin plate splines. Moreover, 
since these functions are globally supported, the
interpolation matrix is full and may be very ill-
conditioned for some RBFs.

In a similar representation as (2.1), for any linear 
partial differential operator  , u  may be
approximated by [8]

( ) ( ) ( )
QN

j j k k
j 1 k 1

u x x x p x
= =

α φ − + β∑ ∑   (2.5)

We use the thin plate spline RBFs in our method. 
The reason is that it has been shown by Franke [9], that 
MQ and thin plate spline give the most accurate results 
for scattered data approximations. Furthermore, the
accuracy of the MQ method depends on a shape
parameter and as yet there is no mathematical theory 
about  how  to  choose  its  optimal  value.  Hence, most 

applications of the MQ use experimental tuning
parameters or expensive optimization techniques to
evaluate the optimum shape parameter [10]. While the 
thin plate spline method gives good agreement without 
requiring such additional parameters and is based on 
sound mathematical theory [11]. 

( ) ( ) 2kk 1
2 2x 1 x log x ,  k+φ = − ∈

from d  to  that generates thin plate spline RBFs is 
conditionally  positive  definite  of order m = k+1, [12]. 
Since φ is C2k-1 continuous, a higher-order thin plate
spline must be used, for higher-order partial differential 
operators.

To avoid problems at   x = 0 (since log(0) = -∞),
we implement 

( ) ( ) 23 x3
2 2x 1 x log xφ = − for k = 2

Definition 1: The points 

{ } d
1 NX  x , ,x= … ⊆  with ( )d

mN Q dim≥ = π 

are called d
m 1( )−π  -unisolvent if the zero polynomial is 

the only polynomial from d
m ( )π   that vanishes on all 

of them.

Theorem 1: Suppose that φ is conditionally positive 
definite of order m and X is a d

m 1( )−π  -unisolvent set 
of centers. Then the system (2.4) is uniquely solvable.

Proof: [12].
The numerical solution of PDEs by RBF methods 

is based on a scattered data interpolation problem which 
was reviewed in this section. 

IMPLEMENTATION OF THE NEW APPROACH

Linear case: Telegraph equation: Let us consider the 
following hyperbolic telegraph equation [2]:

( )
2 2

2 2
u u uu f x, t

tt x
∂ ∂ ∂+ α +β = +

∂∂ ∂

x a,b , 0 t T∈Ω= ⊂ < ≤    (3.1.1)

with initial conditions

( ) ( )1

t 2

u x, 0 g x ,      x O
u (x, 0)  g (x),     x O

 = ∈
 = ∈

(3.1.2)

and Dirichlet boundary condition

( ) ( )u x,t h x,t ,   x O,   0 t T= ∈∂ < ≤ (3.1.3)
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where α and β are known constant coefficients, ƒ, g1, g2 and h are known functions and the function u is unknown.
In this method, we decompose Ω  into a few subdomains

1 1 1 m m m a , b , , a , bΩ = … Ω =      

uniformly. Then, let us discretize (3.1.1) according to the following θ-weighted scheme

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2

u x,t t 2u x,t u x,t t u x,t t u x,t t
u x,t t u x,t t

2 tt

1 u x,t u x,t f x,t t

+ δ − + − δ + δ − − δ  + α = θ ∇ + δ −β + δ δδ

 + − θ ∇ −β + + δ 

(3.1.4)

where ∇ is the gradient differential operator, 0≤θ≤1 and δt is the time step size. Rearranging (3.1.4), by the notation 
un = u(x,tn) where tn = tn-1+δt, we obtain

( ) ( ) ( )( )( ) ( )( ) ( )2 2 2 2 2n 1 2 n 1 n 2 n n 1 n 1t t1 t u t u 2 1 t u 1 t u 1 u t f
2 2

+ + − +αδ αδ   + +βθ δ − θ δ ∇ = − β − θ δ + − θ δ ∇ + − + δ      
(3.1.5)

uk(x,tn), i.e., solution in x∈Ωk and t = tn, can be approximated by 

( ) ( )
N 3

n n n 2 n n
k k, j k , j k , N 2 k,N 1 k,N

j 1

u x x x x x  ,      k 1, ,m
−

− −
=

λ φ − + λ + λ + λ = …∑ (3.1.6)

Let { }N 3
k, j j 1

x , k 1, ,m
−

=
= …

be a set of N-3 scattered nodes in Ωk. Here, we take the Chebyshev-Gauss-Lobatto nodes in Ωk as follows:

( )k k k k
k,j

j 1b a b ax cos ,   k 1, ,m,  j 1, ,N 3
2 N 4 2

  − π− + = + = … = … −   −  
(3.1.7)

Now, to determine the coefficients 

( )Nk,j j 1
 ,k 1, ,m

=
λ = …

in each step, the collocation method may be used. For this reason, we put (3.1.6) into (3.1.5) in every subdomains 
Ωk. Then by substituting collocation points xk,j, j = 1,2,…,N-4 into obtained equation, we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )( ) ( ) ( ) ( ) ( )

k , j

k , j

2 2 2n 1 2 n 1 n
k k, j k x x k k , j

2 22 n n 1 n 1
k x x k k, j k,j

t
1 t u x , t t u x,t | 2 1 t u x ,t

2
k 1, ,m      t

1 t u x,t | 1 u x , t t f x , t ,       
j 2, , N 42

+ +
=

− +
=

αδ + +βθ δ − θ δ ∇ = −β −θ δ + 
 

= …αδ − θ δ ∇ + − + δ  = … − 

(3.1.8)

The additional conditions due to (2.3) are written as:

N 3 N 3 N 3
n 1 n 1 n 1 2
k, j k , j k , j k,j k , j

j 1 j 1 j 1

x x 0,     k 1, ,m
− − −

+ + +

= = =

λ = λ = λ = = …∑ ∑ ∑ (3.1.9)

For α1∈Ω1 and bm∈Ωm, we have the boundary conditions as follows:

( ) ( )
N 3

n 1 n 1 2 n 1 n 1 n 1
1,j 1 1,j 1,N 2 1 1,N 1 1 1,N 1

j 1

a x a a h a ,t
−

+ + + + +
− −

=

λ φ − + λ + λ + λ =∑ (3.1.10)

( ) ( )
N 3

n 1 n 1 2 n 1 n 1 n 1
m,j m 1,j m,N 2 m m,N 1 m m,N m

j 1

b x b b h b ,t
−

+ + + + +
− −

=

λ φ − + λ + λ + λ =∑ (3.1.11)
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To achieve a smooth solution on common boundary points from adjacent subdomains, the solutions in adjacent 
subdomains are imposed to reach the same amount and derivative in their common boundary points. Thus, we have

( )

( )

N 3
n 1 n 1 2 n 1 n 1
i 1,j i i 1,j i 1,N 2 i i 1,N 1 i i 1,N

j 1
N 3

n 1 n 1 2 n 1 n 1
i , j i i 1,j i,N 2 i i,N 1 i i,N

j 1

a x a a

a x a a , i 2, ,m

−
+ + + +
− − − − − − −

=

−
+ + + +

− − −
=

λ φ − + λ + λ + λ

= λ φ − + λ + λ + λ = …

∑

∑
(3.1.12)

( )

( )

i

i

N 3
n 1 n 1 n 1
i 1,j i 1,j x a i 1,N 2 i i 1,N 1

j 1
N 3

n 1 n 1 n 1
i,j i 1,j x a i,N 2 i i,N 1

j 1

d
x x | 2 a

dx

d x x | 2 a ,     i 2, ,m
dx

−
+ + +
− − = − − − −

=

−
+ + +

− = − −
=

λ φ − + λ + λ

= λ φ − + λ + λ = …

∑

∑
(3.1.13)

Equations (3.1.8)-(3.1.13) lead to a linear system of m×N equations with m×N unknowns. We use the LU 
factorization to the coefficient matrix and use this factorization in our algorithm. For n = 0, the Eq. (3.1.8) has the 
following form

( ) ( ) ( ) ( ) ( )( )( ) ( )
( )( ) ( ) ( ) ( ) ( )

k , j

k,j

2 2 21 2 1 0
k k, j k x x k k,j

2 22 0 1 1
k x x k k,j k,j

t
1 t u x , t t u x,t | 2 1 t u x ,t

2
k 1, ,m      t

1 t u x,t | 1 u x , t t f x , t , 
j 2, ,N 42

=

−
=

αδ + +βθ δ −θ δ ∇ = −β −θ δ + 
 

= …αδ − θ δ ∇ + − + δ  = … − 

(3.1.14)

Through initial conditions, we know that:

( ) ( )0
k 1 ku x,t g x ,        x O= ∈ (3.1.15)

To approximate uk(xk,j , t-1) the second initial condition can be used. For this purpose we discretize the second 
initial condition as

( ) ( )
( )

1 1
k k

2 k

u x,t u x, t
g x ,       x O

2 t

−−
= ∈

δ
(3.1.16)

Thus, we have

( ) ( ) ( ) ( ) ( )( )( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )
k , j

k,j

2 2 21 2 1
k k, j k x x 1 k , j

2 22 1 1
1 x x k k, j 2 k, j k , j

t
1 t u x , t t u x,t | 2 1 t g x

2
k 1, ,m      t

1 t g x | 1 u x , t 2 t g x t f x ,t ,   
j 2, ,N 42

=

=

αδ + +βθ δ −θ δ ∇ = −β −θ δ + 
 

= …αδ − θ δ ∇ + − − δ + δ  = … − 

(3.1.17)

At other steps, no problems will be confronted and the solutions obtained from the two previous steps are used 
for the next step.

Nonlinear case: Klein-Gordon equation: Let us consider the following one-dimensional nonlinear Klein-Gordon
equation [7]:

( )
2 2

k
2 2
u u u u f x,t ,   x O a,b , 0 t T

t x
∂ ∂+ α +β + γ = ∈ = ⊂ < ≤  ∂ ∂

 (3.2.1)

with initial conditions 

( ) ( )1

t 2

u x, 0 g x ,      x O
 

u (x, 0)  g (x),     x O
 = ∈
 = ∈

(3.2.2)
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and Dirichlet boundary condition
( ) ( )u x,t h x,t ,   x O,   0 t T= ∈∂ < ≤ (3.2.3)

where α, β and γ are known constants. The ƒ, g1, g2 and h are known functions and the function u is unknown.
In the same way as mentioned in telegraph equation, we decompose Ω  into a few subdomains

1 1 1 m m ma , b , , a ,bΩ = … Ω =      

uniformly and discretize (3.2.1) according to the following θ-weighted schem

( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )( ) ( )

2
2

k2

u x,t t 2u x,t u x,t t
u x,t t u x,t t

t

1 u x,t u x,t u x,t f x,t t

+ δ − + − δ  + θ α ∇ + δ + β + δ δ

 + − θ α∇ + β + γ = + δ 

(3.2.4)

Rearranging (3.2.4), we obtain

( )( ) ( ) ( )( )( ) ( )( ) ( ) ( ) ( )
k2 2 2 2 2 2n 1 2 n 1 n 2 n n n 1 n 11 t u t u 2 1 t u 1 t u t u u t f+ + − ++ β θ δ +αθ δ ∇ = − β − θ δ + α − θ δ ∇ − γ δ − + δ (3.2.5)

In every subdomains Ωk, the collocation method is used by putting (3.1.6) into (3.2.5) and substituting 
collocation points xk,j , j = 2,…,N-4 into obtained equation. Thus, we have

( )( ) ( ) ( ) ( ) ( )( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

k , j

k,j

2 2 2n 1 2 n 1 n
k k, j k x x k k , j

k2 2 22 n n n 1 n 1
k x x k k, j k k , j k,j

1 t u x , t t u x,t | 2 1 t u x ,t

k 1, ,m      
1 t u x,t | t u x ,t u x , t t f x ,t , 

j 2, , N 4

+ +
=

− +
=

+ β θ δ +αθ δ ∇ = −β − θ δ

= …
+α − θ δ ∇ −γ δ − + δ

= … −

(3.2.6)

Again, we have the additional conditions (3.1.9), the boundary conditions (3.1.10) and (3.1.11) and the
equations (3.1.12) and (3.1.13). Therefore, equations (3.2.6), (3.1.9)-(3.1.13) lead to a system of linear equations, 
which is solved using the LU factorization to the coefficient matrix in order to determine the coefficients

( )Nk,j j 1
 ,k 1, ,m

=
λ = …

in each step. For n = 0 the Eq. (3.2.6) has the following form

( )( ) ( ) ( ) ( ) ( )( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

k , j

k,j

2 2 21 2 1 0
k k, j k x x k k , j

k2 2 22 0 0 1 1
k x x k k, j k k, j k , j

1 t u x , t t u x,t | 2 1 t u x ,t

k 1, ,m      
1 t u x,t | t u x ,t u x ,t t f x ,t ,  

j 2, , N 4

=

−
=

+ β θ δ + α θ δ ∇ = −β − θ δ

= …
+α − θ δ ∇ −γ δ − + δ

= … −

(3.2.7)

according to relations (3.1.15) and (3.1.16), we have

( )( ) ( ) ( ) ( ) ( )( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
k , j

k,j

2 2 21 2 1
k k, j k x x 1 k, j

k2 2 22 1 1
1 x x 1 k,j k k, j 2 k, j k,j

1 t u x , t t u x,t | 2 1 t g x

k 1, ,m      
1 t g x | t g x u x ,t 2 t g x t f x , t ,  

j 2, ,N 4

=

=

+ β θ δ +αθ δ ∇ = −β −θ δ

= …
+α − θ δ ∇ −γ δ − − δ + δ

= … −

(3.2.8)

At other steps, no problems will be confronted and the solutions obtained from the two previous steps are used 
for the next  step.

Remark: Although equations (3.1.4) and (3.2.4) are valid for any value of θ∈[0,1], we will use θ = 1/2 (the famous 
Crank-Nicolson scheme).
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NUMERICAL RESULTS

In this section, we present some numerical results 
to test the efficiency of the new scheme for solving time 
dependent partial differential equations.

Example 1: Consider the hyperbolic telegraph Eq.
(3.1.1) with α = 6 and β = 2 in the interval Ω . The 
initial conditions are given by

( ) ( )
( ) ( )

1

t 2

u x, 0 g x sin(x),      x O
u x, 0  g x sin(x),   x O
 = = ∈
 = = − ∈

and the analytical solution is given in [2] as

( ) ( ) ( )u x,t sin x exp t= −

In this case
( ) ( ) ( )f x ,t 2exp t sin x= − −

We extract the boundary function h(x,t) from the 
exact solution. We solve this equation in different 
computational domains (Table 2). The RMS and the 
maximum errors of the obtained numerical results are 
achieved at t = 1. The RMS and the maximum errors 
are defined as follow, respectively:

( ) ( )
N

22
i i

i 1

1
E u x s x

N
=

= −∑

( ) ( )i i1 i N
E max u x s x∞

≤ ≤
= −

where u(x) is the exact solution, s(x) is the approximate 
solution and N

i i 1{ x } =  are collocation points. In each row 
of the Table 2, we use the same number of collocation 
points. For example, in the first row, we use the
algorithm without domain decomposition by 100
collocation points and with two subdomains by 50
collocation points in each subdomains.

The space-time graph of analytical solution is
given in Fig. 1. We also demonstrate the space-time
graph of absolute error with and without domain
decomposition by the same number of collocation
points in Fig. 2 and 3, respectively.

Example 2: Consider the nonlinear Klein-Gordon Eq. 
(3.2.1) with α = -1, ( = 0. ( =1 and k = 2 in the interval 
(. The initial conditions are given by 

( ) ( )

( ) ( )
1

t 2

u x, 0 g x 0,                      x O
1

u x, 0  g x cos(x),     x O
5

 = = ∈



= = ∈

The analytical solution is given as

Table 2: The RMS and the maximum errors, with and without domain decomposition, for example 1

Number of Number of collocation Computational
Ω dt subdomains points in each subdomains E2 E∞ Time(s)
[0,60] 0.001 1 100 0.1526 0.4562 0.7

2 50 1.7×10-4 4.3×10-4 0.7
[0,20] 0.001 1 160 0.0813 0.2305 1.3

4 40 1.8×10-4 2.7×10-4 1.6
[0,30] 0.005 1 210 0.60 1.5 1.1

6 35 9.3×10-4 1.4×10-3 1.6
[0,50] 0.0001 1 120 Fail Fail -

4 30 8.6×10-5 2.1×10-4 6.8

Table 3: The RMS and the maximum errors, with and without domain decomposition, for example 2

Number of Number of collocation Computational
Ω dt subdomains points in each subdomains E2 E∞ Time(s)
[0,50] 0.001 1 120 0.1350 0.3950 0.9

2 60 2.4×10-5 8.5×10-5 0.8
[0,20] 0.001 1 180 0.9228 2.7188 1.6

6 30 3.1×10-5 5.5×10-5 2.6
[0,80] 0.005 1 160 0.3429 0.9440 0.8

4 40 1.1×10-4 2.6×10-4 1
[0,50] 0.0001 1 60 Fail Fail -

2 30 3.6×10-4 8.9×10-4 2.6
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Table 4: The RMS and the Max errors, with and without domain decomposition, for Example 2 when dt = 0.0001, Ω = [0, 50]
Number of subdomains Number of collocation points in each subdomains E2 E∞ Condition number

1 20 0.0071 0.0172 2.9×1015

30 0.0034 0.0061 4.3×1015

40 0.0034 0.0104 5.7×1015

50 0.0284 0.1006 7.1×1015

2 30 3.6×10-4 8.9×10-4 3.4×1014

4 30 4.5×10-5 1.2×10-4 1.6×1013

8 30 4.9×10-6 1.1×10-5 2.3×1012

Fig. 1: Space-time graph of the analytical solution up 
to t = 1s, with dt = 0.01 and dx = 0.01, for 
Example 1 

Fig. 2: Space-time  graph  of  the  absolute  error  up to 
t = 1s, with two subdomains (50 collocation
points in each subdomain) and dt = 0.001, for 
Example 1

( ) 1
u x,t tcosx

5
=

For this case we have

( ) tcosx 1f x,t 1 tcosx
5 5

 = +  

Fig. 3: Space-time  graph  of  the  absolute  error  up  to 
t = 1s, with dt = 0.001 on 100 collocation 
points, without domain decomposition, for
Example 1 

Fig. 4: Space-time graph of the analytical solution up 
to t = 1s, with dt = 0.01 and dx = 0.01, for 
Example 2

We   extract    the   boundary   function   h(x,t) 
from the exact solution. Table 3 and 4, show the
accuracy  and  efficiency  of  the  proposed  approach
in  different  domains.  As mentioned in Example 1, we 
use the same number of collocation points in each row 
of Table 3.
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Fig. 5: Space-time  graph  of  the  absolute  error  up  to 
t = 1s, with two subdomains (60 collocation 
points in each subdomain) and dt = 0.001, for 
Example 2

Fig. 6: Space-time graph of the absolute error up to t = 
1s, with dt = 0.001 on 120 collocation points, 
without domain decomposition, for Example 2

The space-time graph of analytical solution is
given in Fig. 4. We also demonstrate the space-time
graph of absolute error with and without domain
decomposition by the same number of collocation
points in Fig. 5 and 6, respectively.

CONCLUSION

A major drawback of the RBF collocation method 
is that a large number of collocation points are required 
in order to obtain a desirable accuracy on large
domains. This hinders the application of the RBFs to 
solve large domain problems due to severe ill-
conditioning of the coefficient matrix. To overcome this 
difficulty, the domain was decomposed to a few
suitable subdomains. For instance, the linear hyperbolic 
telegraph   equation   and   the nonlinear Klein-Gordon
equation were solved in different domains to
demonstrate the effectiveness of the new approach. The

numerical results showed the high accuracy of the
proposed scheme in this research in comparison with 
the classical method lacking domain decomposition.
Extension of the proposed method to solve time
dependent PDEs in high dimensions is the subject of a 
future research work.
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