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Abstract: In this study, a Comparison between response surface and parameter dual methodologies for 
optimization of multilamellar liposomes from Soya lecithin with 75% phosphatidylcholine in textile system 
were carried out and the behavior of liposomes in dye-bath at different temperature, time, Sodium Sulphate, 
pH and concentration (five factors) were considered using a standard Central Composite Design (CCD) 
matrix in both cases to produce representative data. The results of optimization method for the data of 
recent published research article which was only based on general mean function shows that the estimation 
of optimal factor values through new methodology of parameter dual is more efficient.
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INTRODUCTION

There are a number of potential approaches to 
directly modeling the mean and variance as a function 
of the control factors. A general approach is to assume 
that the underlying functional forms for the mean and 
variance models can be expressed parametrically.
Assuming a d point design with ni replicates at each 
location (i = 1, 2, …, d), the point estimators of the 
process mean and variance, iy  and 2

is , respectively, 
forms the data for the dual response system. Since the 
purpose of this article is to demonstrate the utility of a 
hybrid approach (combining a parametric and
nonparametric approach to modeling) for robust design, 
we will consider an “off the shelf” model for the mean. 
An “off the shelf” model for the process mean is linear 
in the model parameters and can be written as:

Means model: 

1/2 *
i i i iy = x + g (x ; )′ ′β γ ε (1)

where iX ′  and i
*X ′  are 1×k and 1×l vectors of means 

model and variance model regressors, respectively,
expanded to model form, β and γ are k×1 and m×1
vectors   of   mean   and   variance   model   parameters,

respectively, g is the underlying variance function and 
εI denotes the random error for the mean function. The 
εi  are assumed to be uncorrelated with mean zero and 
variance of one. Note that the model terms for the ith

observation in the means model are denoted by iX ′

while the model terms for the variance model are

denoted by i
*X ′ . This allows for the fact that the

process mean and variance may not depend on the same 
set of regressors.

Similar to the modeling of the mean, various
modeling strategies have been utilized for estimating 
the underlying variance function. Bartlett and Kendall 
[1] demonstrated that if the errors are normal about the 
mean model and if the design points are replicated, the 
variance can be modeled via a log-linear model with the 
d sample variances utilized for the responses. A great 
deal of work has also been done using generalized 
linear models for estimating the variance function.
Although not an exhaustive list, the reader is referred to 
Box and Meyer [2], Aitkin [3], Grego [4], and  Myers 
and Montgomery [5]. As mentioned previously, since 
the purpose of this manuscript is to demonstrate the 
utility of a hybrid approach to modeling, we choose an 
“off the shelf” approach to variance modeling. The log-
linear mo del proposed by Bartlett and Kendall [20] is a 
popular one [6, 7] and and is written explicitly as:
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Variance model:

2 * * *
i i i i iln(s ) g (X ) X= +η = γ + η (2)

where ηi denotes the model error term whose
expectation is assumed to be zero and whose variance is 
assumed constant across the d design points.

Assuming the model forms for the mean and
variance given in (1) and (2), the model parameters are 
estimated using the following Estimated Weighted
Least Squares (EWLS) algorithm. 

Step 1: Fit the variance model, 2 *
i i iln(s ) X= γ + η , via 

Ordinary Least Squares (OLS), obtaining
(OLS) * * 1 * *ˆ (X X ) X y−′γ =  where y* is the d×1 vector of log 

transformed sample variances.

Step 2: Use 2 * (OLS)
i i ˆˆ exp(X )′σ = γ  as the estimated

variances to compute the d×d estimated variance-
covariance matrix for the means model,

2 2 2
1 2 dˆ ˆ ˆ ˆV diag( , ,..., )= σ σ σ .

Step 3: Use 1V̂− as the estimated weight matrix to fit 
the means model, yielding (EWLS) 1 -1 1ˆ ˆ ˆ= (XV X) X V y− −′ ′β

where y  denotes the d×1 vector of sample averages.
The algorithm above yields the following estimates 

of the process mean and variance functions:

Estimated process mean: 

(EWLS) (EWLS)
i i ˆE[y ] =x′ β


(3)

Estimated process variance:

(OLS) * (OLS)
i i ˆVar[y ] =exp(x )′γ (4)

Therefore, A purely parametric approach involves 
the user specifying functional forms for both the mean 
and variance functions. In what could be considered an 
off-the shelf parametric model, the user assumes a
known linear model for the process mean and a known 
log-linear relationship for the variance.

1 / 2 1 /2 *
i i i i i i iy h ( x ) g (z ) x g (x ; )′ ′= + γ ε = β + γ ε (5)

2 * * *
i i i i iln(s ) g (x ) x ′= + η = γ + η (6)

The iterative analysis begins with an initial
Ordinary  Least  Squares (OLS) fit to the mean and then 

uses gamma regression to fit an exponential function to 
the squared OLS residuals. The mean and variance
model parameters are re-estimated via Estimated
Weighted Least Squares (EWLS) and the entire
iterative process continues until convergence of the 
parameter estimates in the means model. At
convergence, these mean and variance model estimates 
are the maximum likelihood estimates provided that the 
errors are normally distributed. Valid inferences from 
such an analysis depend heavily on the assumption that 
the specified forms of h and g are sufficient across the 
entire range of the data. If h and g are misspecified, any 
inferences from the analysis become suspect. Assuming
the model forms for the mean and variance given in (5)
and (6), the model parameters are estimated using the
Estimated Weighted Least Squares (EWLS) algorithm
for mean model and Ordinary Least Square (OLS) for 
Variance model. The algorithm above yields the
following estimates of the process mean and variance
functions.

Estimatedprocess mean:

EWLS
i i

ˆÊ (y) x ′= β

Estimatedprocess variance:

(ols) * (ols)
i i

ˆ ˆV( y ) exp(x )′= γ

Once estimates of the mean and variance have been
calculated, the goal becomes finding the operating
conditions for the control factors such that the mean is as
close as possible to the target while maintaining
minimum process variance. This is often accomplished
via minimization of an objective function such as the
Squared Error Loss (SEL):

{ } [ ]22SEL E(y(x) T) E(y(x) T V y(x)= − = − +

where T denotes the target value for the process mean.
Minimization can be accomplished via non-linear
programming using a method such as the generalized
reduce gradient or the Nelder-Mead simplex algorithm.
Note that the determined set of optimal operating
conditions is highly dependent on quality estimation of
both the mean and variance functions.

Misspecification of the forms of either the mean or
variance models can have serious implications in
process optimization.

MATERIALS AND METHODS

The wool fabric with plain woven structure from 
48/2 Nm yarns was supplied by Iran Merino. The fabric 
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was scoured with 1% anionic detergent VEROLAN-
NBO (supplied by Rodulf) at 708C for 45 min and then 
washed with tap water and dried at room temperature.
Industrial grade of aluminium sulphate was used for 
mordanting of wool samples. Soya lecithin (containing 
75% phosphatidylcholine) with phase transition
temperature (Tc) of 2188C was gifted by Lipoid
(Germany). Madder was prepared from Yazd
providence of Iran. The reflectance spectra of the dyed 
samples were recorded on an ACS Spectra Sensor II 
integrated  with  an  IBM-PC.  The  wash-fastness of 
the liposomes treated madder-dyed fabric were
measured according to ISO150-C01. For light-fastness
measurements, the samples were exposed to the
daylight for 7 days according to the daylight ISO 105-
B01 and changes in the color (fading) were assessed by 
the blue scale. Also the dry and wet rub fastness of the 
samples evaluated according to ISO 105-X12. The
sample pictures were taken with Philips XL30 SEM 
with 34000. The drop absorbency of the fabric samples 
was also measured by dropping of water droplet from 1 
cm on the fabric surface on the glass by a small syringe. 
The time of complete absorption of the water droplets 
on the fabric surface was recorded and the mean value 
of 20 replicates was reported. Dyeing The mordanted 
wool samples were steeped in the dye bath with liquor-
to-goods ratio of 40 : 1 that was prepared by 2% o.w.f. 
of extracted dye at pH 2-4 (acetic acid) with different 
concentrations   of   freshly   prepared  MLV  liposomes

(0, 1, 2, 3% o.w.f.). Dyeing was started at room
temperature and then raised 28C/min to the final
desired temperature including 75, 85 and 958C. The
dyeing was carried out with liposomes and without 
liposomes in various times of 30, 45 and 60 min. The 
samples were rinsed with tap water and dried at room 
temperature. The amount of reflectance was selected at 
the maximum wavelength and the K/S value which is of 
the type “the larger the better” was calculated according 
to the Kubelka-Munk equation:

2K (1 R) / 2RS = −

Once the data are collected, our goal is to fit a model 
to estimate the true relationship between the explanatory 
variables and response. For the response problem, we 
may use regression techniques to model the
relationships between the explanatory variables and the 
responses . However, in fact, the fits obtained by the 
regression techniques in the univariate case are equivalent 
to the fits obtained by the multivariate regression 
techniques, including the parametric, nonparametric and 
semi parametric methods. Therefore, in this study, For
the response variables, suppose the true relationship 
between the k explanatory variables, x1i, x2i,..., xki and 
the response, y, i=1,..., n, is i 1i 2i ki iy f ( x , x , . . . , x )= + ε ,
where the function f represents the true relationship, n 
is the sample size and ei represents a random error term 

Table 1: Design matrix of experiments and results of the runs
Sample Zirconium oxychloride Temperature Citric acid Formic acid X1 X2 M

1 10.30 95.0 12.80 5.65 1.7 0.5 1.20
2 10.30 77.0 12.80 10.35 2.6 0.7 1.65
3 4.00 86.0 9.55 8.00 2.2 1.2 1.70
4 5.60 95.0 12.80 10.35 3.2 1.8 2.50
5 10.30 95.0 6.30 5.65 1.5 0.5 1.00
6 7.95 101.14 9.55 8.00 1.5 0.5 1.00
7 5.60 95.0 6.30 10.35 2.3 1.0 1.65
8 11.90 86.0 9.55 8.00 1.8 0.9 1.35
9 7.95 86.0 15.02 8.00 1.8 0.8 1.30
10 5.60 77.0 12.80 5.65 2.1 1.3 1.70
11 7.95 86.0 9.55 8.00 2.5 1.0 1.75
12 7.95 86.0 9.55 8.00 1.5 0.4 0.95
13 7.95 86.0 9.55 8.00 1.4 0.5 0.95
14 7.95 86.0 4.08 8.00 2.7 1.5 2.10
15 5.60 77.0 6.30 5.65 2.9 1.0 1.95
16 7.95 86.0 9.55 8.00 1.3 0.5 0.90
17 7.95 70.86 9.55 8.00 2.0 0.6 1.30
18 7.95 86.0 9.55 11.95 1.7 0.7 1.20
19 10.30 77.0 6.30 10.35 2.0 0.5 1.25
20 7.95 86.0 9.55 4.05 2.5 0.7 1.60
21 7.95 86.0 9.55 8.00 1.2 0.5 0.85
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Table 2: ANOVA for response surface methodology

Source Sum of square DF Mean square F value Sig

Model 1.230 3 0.410 2.66 0.0814 (Not significant)

X1 0.510 1 0.510 3.28 0.0879
X4 0.036 1 0.036 0.23 0.6350
X4X4 0.069 1 0.069 4.46 0.0498

Residual 2.630 17 0.150
Lack of fit 1.900 13 0.180 0.81 0.6587
Total 3.860 20 -

Table 3: Analysis of variance of parameter model

Df Sum. Sq Mean. Sq F. value Pr. F.

X1 1 2.00E-05 2.00E-05 0.00037 0.98483

X2 1 0.12462 0.12462 1.89513 0.18758
x3 1 0.01789 0.01789 0.27209 0.60908
x4 1 0.00092 0.00092 0.014 0.9073

Residuals 16 1.05213 0.06576 NA NA

Table 4: Estimates of the model parameters

Estimate Std..Error T value Probability

(Intercept) 4.10640 2.59944 1.57972 0.16525
x1 5.28657 8.55476 0.61797 0.55931
x2 -3.73090 8.40389 -0.44395 0.67264
x3 -10.88841 6.01406 -1.81049 0.12019
x4 -11.57946 8.56543 -1.35188 0.22515
x1.x1 3.84247 2.48712 1.54495 0.17331
x1.x2 -8.66034 7.46944 -1.15944 0.29033
x1.x3 -0.00276 1.95430 -0.00141 0.99892
x1.x4 -0.96834 3.12422 -0.30995 0.76709
x2.x2 2.33854 7.07644 0.33047 0.75228
x2.x3 4.78325 4.77934 1.00082 0.35555
x2.x4 7.49969 7.46997 1.00398 0.35415
x3.x3 4.17161 2.15817 1.93293 0.10143
x3.x4 2.16444 1.96273 1.10277 0.31238
x4.x4 2.85402 2.5029 1.14029 0.29763

from the process assumed to be independently
identically distributed with mean zero and constant 
variance s i2. Consequently,

( ) ( )i 1i ki i 1i kiE y | x ,...,x µ f x , ..., x= =

is the true mean response function. It should be noted 
that the function f may be a different function of the 
same k repressors for the response.

A CCD was conducted with a total of 21 design 
points, including 42 runs in the factorial region,
augmented  with  six  axial  runs  and  two  center  runs 
(Table 1).

Table 5: Analysis of variance of response y-bar

Df Sum.Sq Mean.Sq F.value Probability

x1 1 1.37437 1.37437 5.66958 0.05469
x2 1 0.03744 0.03744 0.15444 0.70791
x3 1 0.01712 0.01712 0.07062 0.79933
x4 1 0.07599 0.07599 0.31349 0.59581
x1.x1 1 0.50307 0.50307 2.07527 0.19978
x1.x2 1 0.42856 0.42856 1.76792 0.23195
x1.x3 1 0.02641 0.02641 0.10894 0.75258
x1.x4 1 0.1097 0.1097 0.45255 0.52617
x2.x2 1 0.00593 0.00593 0.02447 0.88083
x2.x3 1 0.2351 0.2351 0.96984 0.36275
x2.x4 1 0.24314 0.24314 1.00299 0.35525
x3.x3 1 0.83507 0.83507 3.44486 0.11284
x3.x4 1 0.29497 0.29497 1.21682 0.31225
x4.x4 1 0.3152 0.3152 1.30025 0.29763
Residuals 6 1.45447 0.24241 NA NA

 Using the second-order polynomial parametric
method to model of response to obtain the optimal fitted 
value y (x) at location x. The final fitted second-order
models for the responses by RSM are given in Table 2. 
For the response y, the final fitted models include one 
terms: x4.x4. The natural independent variables are
transformed into the coded variables within the range 
of [0,1]. 

Where the results of analysis variance and
estimates of parameters for parameter model are given 
in Table 3 and 4, respectively.

However, the results of analysis of variance of
response y -bar are given in Table 5. 
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Table 6: Results on model comparisons of OLS and RSM

Method SEL R2 R2
adj PRESS Yhat

RSM 0.150 0.319 0.199 5.192 1.723
OLS 0.139 0.416 0.210 4.887 1.806

?The best value is bold

RESULTS ON MODEL COMPARISONS

During the modeling stage, Table 6 shows the
numerical results for model comparisons of RSM and 
OLS for the response respectively. Table 6 shows that 
OLS has smaller, often substantially smaller, SEL than 
RSM across of the response. Table 6 shows that
OLS has smaller, often substantially smaller, s2 and 
larger, substantially larger, Radj than RSM across of the 
response. OLS has larger R2 than RSM in of the 
response. OLS has smaller PRESS than RSM in the
response.

OPTIMIZATION RESULTS

During the optimization stage, the desirability
function method is used to obtain the best compromise 
of  the  response. In  the  individual desirability function, 
the prespecified parameters are set as follows. The 
maximum (or minimum) of the observed data is
used as the T value for response since they are not 
available. That is, in this example, T = 2.20. Since a 
CCD was utilized in the example, the solution vector xs
shall be constrained to be within the experimental region
R, a hyper-circle in this 4-dimensional example. As 
mentioned previously, the natural independent variables 
are  transformed  into  the  coded  variables  within the 
range  of  [0, 1]. Therefore, the solution vector xs is 
defined as 2 2 2 2

1 2 3(x 0.5) (x 0.5) (x 0.5) 0.5− + − + − ≤ in the 
transformed experimental region. As mentioned
earlier, using the second-order polynomial to
parametrically model response to obtain the optimal 
fitted value y(x) at location x. The final fitted models are 
given in as well as the location where the simultaneous
optimal solution is found. Based on the location they found 

using Design-Expert, the corresponding fitted values for 
the response is re-calculated by us as well as the
desirability value D and given as follows. The RSM 
solution: x1 = 0.106, x2 = 0.913, x3 = 0.123, x4=0.062 
and D=0.9271. We find the optimization solutions by 
the one different modeling Technique. The solutions we 
find by the OLS method are: x1=0.121, x2=0.889,
x3=0.117, x4=0.081 and D=0.9365. 
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