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Abstract: Background: obese subjects have a more elevated degree of oxidative stress than normal as
increased body fat stimu lates excessive reactive oxygen species (ROS) production. Also, obesity is associated
with serious morbidities including a high incidence of type 2 diabetes and cataractogenesis. Methods: in the
present study the body mass index (BMI) was evaluated. Fasting blood glucose (FBG), glycosylated
hemoglobin (HbA ), Malondialdehyde (MDA), Antioxidant markers (Total antioxidant capacity (TAC), reduced1c

glutathione (GSH). Superoxide dismutase (SOD) and Advanced glycation end products (AGEs) were assayed.
Also, determination of total protein and electrophoretic analysis of lens proteins were estimated in 40 rats
divided into four groups of 10 animals each: control (group I); diabetic (group II) injected with a dose of 40
mg/kg by streptozotosin; high fat diet (Group III) were access to high fat diet and (Group IV) were access to
a high fat diet and injected with a dose of 40 mg/kg by streptozotosin. Results: there was a statistical significant
increase in FBG, HbA , MDA and AGEs levels in diabetic and HFD groups compared to control group.1c

Meanwhile, there were statistical significant decrease in GSH and SOD activities in both diabetic and HFD
groups compared to control group. On the other hand, there were statistical significant decrease in TAC level
and total lens proteins in diabetic groups compared to control group. Sodium dodecyl sulfate (SDS)
electrophoresis showed aggregation of lens proteins in the diabetic groups compared to HFD and control
groups. Conclusion: this study clarifies increased accumulation of AGEs and increased lipid peroxidation
products along with impaired antioxidant status in obesity and at accelerated rate in diabetics. Proper control
of hyperglycemia, blocking of AGEs pathways by AGEs-inhibitors and low fat diet may be beneficial to delay
diabetic cataractogensis.
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INTRODUCTION Diabetes mellitus is a group of metabolic diseases

Cataract is most simply defined as opacity of the defects  in  insulin secretion, insulin action, or both [3].
crystalline lens [1]. One of the prominent characteristics The prevalence of diabetes mellitus is increasing rapidly
of human and experimental cataract is a massive increase in association with the increase in obesity. Worldwide,
in water insoluble protein fractions which are made  up  of more than 285 million people are affected by diabetes
protein polymers. These polymers are characterized by mellitus. This number is expected to increase to 439 million
brown coloration and fluorescence appearance in such by 2030 [4]. It is also estimated that by the year 2030,
lenses, which is important for cataractogenesis [2]. Egypt will have at least 8.6 million adults with diabetes [5].

characterized   by    hyperglycemia   resulting   from
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Diabetic cataract, is considered as a complication of Group IV: Animals were access to high fat diet and
diabetes mellitus and the cause of visual impairment that injected individually with a dose of 40 mg/kg by
can affect in individuals at younger ages [6]. Chronic streptozotosin (STZ).
hyperglycemia and the duration of diabetes are
considered to be the major risk factors for these diabetic Streptozotosin (STZ) was purchased from Sigma
complications, Di Benedetto et al. [7]. Several factors, Chemical Co. (St Louis, MO, USA). Rats after
such as polyol pathway, advanced glycation end overnight fasting were injected intraperitoneally with
products  (AGEs)    and oxidative      stress    have  been STZ (40 mg/kg body weight), dissolved in 0.05 M
implicated in the development of diabetic cataract [8]. citrate buffer, pH 4.5, immediately before use) to

There is growing evidence that AGEs and RAGE induce type 2 diabetes [15].
(Receptor for AGEs) interaction stimulates oxidative
stress and tissue damage in diabetes [9,10]. Oxidative Experimental Diet:
stress is increased in diabetes mellitus owing to the
increase in the production of oxygen free radicals and /or A semisynthetic nutritionally adequate diet was
deficiency in antioxidant defense mechanisms [11]. prepared and fed to rats according to the designed

Obesity is an energy-rich condition associated with protocol. The composition of diets was prepared
overnutrition, which impairs systemic metabolic according to Hong et al. [16].
homeostasis and elicits stress [12]. Egypt is one of the The experiment continues for 3 months, at the end of
countries in the world where the problem of obesity has the experimental period, the body weight was
been nearing an epidemic level. Nearly 70% of adult recorded for each animal and the animals were kept
women and 48% of men in Egypt are overweight or obese fasting for 12 h and the blood samples were collected
[13]. Obesity is a major public health problem and its from the retro-orbital venous plexus on an
impact on ocular health is increasingly recognized. anticoagulant agent.
Association of obesity with cataract has been reported
with varying degree of certainty. The inconsistency of Biochemical Analysis:
results combined with the deficiency of robust data;
suggest that further investigations are required to clarify Blood hemoglobin (Hb) was evaluated by the
this association [14]. chemical method according to Betke & Savelsberg

The aim of this study is to determine the potential [17] & glycosylated hemoglobin (HB ) was assayed
role of advanced glycation end products (AGEs), by Ion Exchange Resin method using a kit provided
oxidative stresses and obesity in the development and by NS Biotec, (Egypt).
progression of diabetic cataract. The determination of reduced glutathione (GSH) was

MATERIALS AND METHODS Beutler et al. [18] & superoxide dismutase (SOD)

Forty white albinos Sprague Dawley rats of body Biodiagnostic, (Egypt).
weight (120 - 150 g) comprising both sexes and purchased The determination of glucose using a kit supplied by
from the animal house colony in the Research Institute of BioMe´rieux, CA 61-269; (France), malondialdehyde
Ophthalmology. (MDA) assayed a colorimetric method using a kit

Experimental animals in this study were divided into supplied by Biodiagnostic, (Egypt), total antioxidant
four groups (10 for each): capacity (TAC) measured by colorimetric method

Group I: Animals fed on standard diet that served as a advanced glycation end products (AGEs) were done
control. by Enzyme linked immunosorbent assay (ELISA)

Group II: Animals injected individually with a dose of 40 CA 92126, San Diego, (USA).
mg/kg by streptozotosin (STZ). After blood collection, the rats were scarified and the

Group III: Animals were access to high fat diet (HFD). the  eye  by  making  a  cission  in the cornea using a

1c

performed by the chemical method according to

assay by colorimetric method using a kit provided by

using a kit provided by Biodiagnostic, (Egypt) &

procedure using a kit supplied by Cell Biolabs, Inc,

eye ball was removed. The lens was separated from
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sharp blade. The weight of the lenses was significant increase in plasma MDA level in group III
determined.  The   lens   was   homogenized in (HFD) compared to control (Group I) (p-value <0.05)
distilled water (84 mg lens tissue/ 1 ml distilled water). (Table 2).
This was used for determination of total protein by
the method of Lowery et al. [19] and electrophoretic Both groups II and IV (Diabetic and HFD + diabetic)
analysis of proteins according to Laemmli [20]. showed significant decrease in plasma total

Statistical Analysis: Statistical analysis was carried out statistical significant decrease in erythrocyte reduced
using Microsoft excel (Version 10)  and  statistical glutathione (GSH) concentration and erythrocyte
package for social sciences (SPSS) software (Version 20). superoxide dismutase (SOD) activity compared to
All values are expressed as mean±standard error (S.E) control (Group I) (p-values <0.05 and p-values
[21]. Continuous variables from more than two groups <0.001), respectively. On the other hand, there was
were compared with one-way analysis of variance no significant decrease in plasma total antioxidant
(ANOVA) and Post hoc-LSD [22]. The p-values were capacity level and a significant decrease in
considered statistically significant at: P > 0.001= highly erythrocyte   reduced   glutathione  concentration
Significant, P > 0.05= significant and P < 0.05= non and erythrocyte  superoxide dismutase (SOD)
significant (N.S). activity in group III (HFD) compared to control

(Group I) (p-value >0.05 and p-value <0.05),
RESULTS respectively (Table 2).

Body weight decreased significantly in group II had significantly higher plasma advanced glycation
(Diabetic) compared to control (Group I) (p-value endproducts (AGEs) compared to control (Group I)
<0.001). While, there was a high significant increase (p-values <0.001). While, there was a significant
in body weight in group III (HFD) compared to increase in plasma AGEs level in group III (HFD)
control (Group I) (p-value <0.001) and there was no compared  to  control  (Group  I) (p-value <0.05)
significant change in body weight in group IV (HFD (Table 2).
+ diabetic) compared to control (Group I) (p-value Both groups II and IV (Diabetic and HFD + diabetic)
>0.05) (Table 1). showed a high statistical  significant  decrease in
Both groups II and IV (Diabetic and HFD + diabetic) total  lens  protein  compared  to   control  (Group I)
had significantly higher fasting blood glucose (FBG) (p-values <0.001). On the other hand, there was no
and glycosylated hemoglobin (HbA ) compared to significant decrease in total lens protein in group III1c

control (Group I) (p-values <0.001). On the other (HFD) compared to control (Group I) (p-value >0.05)
hand, there was a significant increase in fasting (Table 2).
blood glucose (FBG) and glycosylated hemoglobin
(HbA ) in group III (HFD) compared to control Sodium Dodecyl Sulfate (SDS) Polyacrylamide Gel1c

(group I) (p-value <0.05) (Table 1). Electrophoresis:    SDS     electrophoresis    of  soluble
Both groups II and IV (Diabetic and HFD + diabetic) lens  protein   showed    aggregated    band  in  both
showed a high statistical significant increase in groups  II   and   IV   (Diabetic  and  HFD  +  diabetic)  at
plasma  MDA  level  compared  to control (Group I) 35  KDa  with  clear    disappearance   of  this band in
(p-values <0.001). On  the  other  hand,  there  was  a HFD    and       control        groups.       This      aggregation

antioxidant capacity (TAC) level and a highly

Both groups II and IV (Diabetic and HFD + diabetic)

Table 1: Body weight, fasting blood, glucose, Blood hemoglobin and HbA  in all studied groups:1c

Group Body weight (g) Fasting blood glucose (mg/dL) Blood hemoglobin (g/dL) HbA  (%)1c

Control (n=10) 229.9±3.24a 90.4±3.59a 10.52±0.18a 4.57±0.47a
Diabetic (n=10) 195.80±2.03b 186.20±3.79b 7.23±0.10b 10.46±0.55b
High fat diet (HFD) (n=10) 298.40±3.56c 105.00±3.00c 9.84±0.16c 7.88±0.51c
High fat diet (HFD) + Diabetic (n=10) 226.40±3.09a 201.90±3.13d 6.88±0.12b 12.02±1.06b
F ratio 203.364 275.251 158.096 22.164
p value ** 0.000 ** 0.000 ** 0.000 ** 0.000
Groups with different letters have a statistically significant difference. p* = significant at p-value <0.05, p** = highly significant at p-value <0.001 and NS=
non-significant at p-value >0.05.
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Table 2: Plasma malondialdehyde level and TAC, GSH, SOD and AGEs levels in all the studied groups
Group (n=10) MDA (nmol/mL) TAC (mM) GSH (mg/dL) SOD (U/g Hb) AGEs (µg/mL) Total lens protein (mg/g wet. wet)
Control (n=10) 0.90±0.07a 1.80±0.19a 85.98±4.68a 1497.90±83.29a 0.73±0.07a 251.43±9.72 a
Diabetic (n=10) 2.14±0.10b 1.13±0.10bc 40.46±3.94b 687.60±69.74b 1.41±0.10bc 182.9±7.41b
High fat diet (HFD) (n=10) 1.32±0.08c 1.52±0.18ab 65.38±2.15c 1068.80±90.17c 1.18±0.09b 243.18±9.72a
High fat diet (HFD) +Diabetic (n=10) 2.41±0.07d 1.03±0.11c 35.84±4.03b 621.10±72.42b 1.48±0.11c 144.05±3.10d
F ratio 73.202 5.716 37.261 25.946 12.353 39.046
p value ** 0.000 * 0.003 ** 0.000 ** 0.000 ** 0.000 ** 0.000
Groups with different letters have a statistically significant difference. p*= significant at p-value <0.05, p**= highly significant at p-value <0.001 and NS=
non-significant at p-value >0.05.

Fig. 1: Typical SDS-polyacrylamide gel electrophoretic difference in body weight in group IV (HFD + diabetic)
pattern of lens proteins. compared to control (Group I). This result agreed with that
 M — protein marker (KDa), of Ugochukwu & Figgers [36]. While, Kim et al. [37]
 Lane 1— control, found out elevated body weights of the Zucker diabetic
Lane 2 — diabetic group, fatty (ZDF) rats to approximately 78% compared to
 Lane 3 — HFD group, controls. Also, Mega et al. [38] found that the obese
 Lane 4 — (HFD + diabetic) group. diabetic ZDF rats exhibit an 8.7% reduction in their body

and    insolubization       of       lens     proteins in The cytotoxic action of STZ is associated with the
diabetic  groups  is  an  indicator  of  cataractogenesis generation of ROS causing oxidative damage that leads to
(Fig. 1). -cell destruction through the induction of apoptosis and

DISCUSSION -cells cytotoxic activity of STZ is not fully understood,

Obesity is considered to be a disorder of energy radical scavenger-enzymes thereby enhancing the
balance, occurring when energy expenditure is not in production of the superoxide radical which can damage
equilibrium with daily energy intake, so as to ensure body pancreatic -cells [40]. In addition, the intracellular
weight homeostasis [23]. Although the etiology of metabolism of STZ produces nitric oxide that hastens
obesity is complex, dietary factors, particularly the DNA fragmentation, leading to severe necrosis of the -
consumption of a high fat diet (HFD), is considered the cells, thereby the rate of insulin synthesis is diminished
major risk factor for its development [24]. that ultimately resulting in hyperglycemia [41].

The present study revealed a highly significant In the present study, a highly statistical significant
reduction in body weight in group II (Diabetic) compared increase in both fasting blood glucose (FBG) and
to control (Group 1). This is in agreement with the study glycosylated hemoglobin (HbA ) was observed in group
of Sajithlal et al. [25], Duzguner & Kaya [26] and II (Diabetic) compared to control (Group I). This result is
Balakumar et al. [27]. Also, Eleazu et al. [28] reported that in  agreement  with  that of Sajithlal et al. [25],Duzguner &

in diabetes, the destruction of the pancreatic -cells
accompanied with insulin deficiency leading to increased
synthesis of ketone bodies which are excreted in urine.
The increased synthesis of ketone bodies coupled to
lipolysis leads to a severe body weight loss. 

The current study showed that body weight
increaseds significantly in the HFD group compared with
the control group. This is in accordance with the study of
Lee et al. [29], Amin & Nagy [30] and Hussein [31]. It is
usually assumed that high calorie and/or high fat diets
can lead to obesity [32]. Many reports [33- 35] showed
that high fat diet can lead to visceral obesity in rodent
animal models.

Moreover, this study demonstrated no significant

weight compared with the lean control rats. 

suppression of  insulin  biosynthesis [39]. Although the

it is thought to be mediated by the inhibition of free

1c



Global Veterinaria, 12 (5): 700-709, 2014

704

Kaya [26], Balakumar et al. [27] and Civelek et al. [42]. Ndisang & Jadhav [57], Osman et al. [58] and Matsinkou
These findings reflected the induction of diabetes mellitus et al. [59]. This severe depletion of TAC may be explained
in STZ administered rats. by the glycemic deregulation in diabetic rats.

Also, a significant increase in both fasting blood Also, there was a significant decrease in plasma TAC
glucose (FBG) and glycosylated hemoglobin (HbA ) was in group IV (Diabetic and HFD + diabetic) compared to1c

detected in group III (HFD) compared to control (Group I). control (Group I). This is in agreement with that reported
This result agreed with that of Amin & Nagy [30], by Mahmoud et al. [44].
Hussein [31] and Brockman et al. [43]. The notable decline in the key cellular non-enzymatic

In the current study, there was a high statistical antioxidant defense system extensively provokes the
significant increase in both fasting blood glucose (FBG) susceptibility to oxidative stress [60].
and glycosylated hemoglobin (HbA ) in group IV (HFD The present study showed that there were a high1c

+ diabetic) compared to control (group I). This result significant decrease in both erythrocyte reduced
agreed with that of Mega et al. [38], Kim et al. [37] and glutathione (GSH) concentration and erythrocyte
Mahmoud et al. [44]confirming the glycemic deregulation. superoxide dismutase (SOD) activity in group II (Diabetic)

Diabetics usually exhibit high oxidative stress due to compared to control (Group I). This was in agreement with
persistent and chronic hyperglycemia, which thereby that reported by Sajithlal et al. [25]and Duzguner & Kaya
depletes the activity of antioxidative defense system and [26]. However, to the contrary of this study, Taheri et al.
thus promotes free radicals generation [45]. Oxygen free [61] reported that animal and human studies have shown
radicals could react with polyunsaturated fatty acids contradictory results on the influence of diabetes on SOD
which lead to lipid peroxidation (LPO) [46, 47]. Increased activity. Both increase and decrease in SOD activity were
LPO impairs membrane function by decreasing membrane reported in erythrocytes, whereas increased activity was
fluidity and changing the activity of membrane-bound seen in plasma and the retina and reduced activity in the
enzymes and receptors [48]. As a by-product of lipid pancreas. Rauscher et al. [62] found that SOD activity
peroxidation, MDA reflects the degree of peroxidation in was increased in diabetic rats after 32 weeks of treatment.
the body [44]. The variation in results from animal studies may be due to

The present study detected that plasma differences in selection of gender, duration of diabetes,
malondialdehyde (MDA) level shows a high significant tissues investigated and species of animals used [61].
increase in group II (diabetic) compared with their level in Also, the significant decrease in both erythrocyte
control (Group I). This is supported by Duzguner & Kaya reduced glutathione concentration and erythrocyte
[26],  Balakumar  et  al. [27], Kakkar et al. [49] and Sailaja superoxide dismutase (SOD) activity in group III (HFD)
et al. [50] and all reported an increase in plasma MDA by compared to control (group I). These results are in
hyperglycemia-induced glucose autoxidation and agreement with that of Elhadi et al. [63] who found that
glycation of proteins. ROS production was increased in parallel with fat

The present study showed that there was a accumulation. Also, Grundy [64] found that the
significant increase in  plasma malondialdehyde  (MDA) production of ROS increased selectively in adipose
in  group  III  (HFD)  compared  to   control   (Group I). tissues of obese mice. The decline shown in plasma
This finding is supported by Belobrajdic et al. [51]. reduced/oxidized glutathione ratio and in the antioxidant
Several studies have also shown elevated lipid enzymes may be a consequence of the ability of free fatty
peroxidation products in obesity [52- 54]. Zhang et al. [55] acids (FFAs) to increase ROS formation. Moreover,
suggested that high intake of dietary fat directly Toborek et al. [65] suggested that FFAs not only induce
enhanced ROS overproduction which increased lipid a state of oxidative stress, but also impair the endogenous
peroxidation [55]. Also, in the present study a high antioxidant defenses by decreasing intracellular
significant increase in plasma malondialdehyde (MDA) glutathione. Also, Brownlee [66] suggested that
was found in group IV (HFD + diabetic) compared to hyperglycemia in the HFD group activates different
control (Group I). This result agreed with that reported by pathways leading to increased oxidative stress coupled to
Mahmoud et al. [44] and Zhang et al. [56]. inhibition of the pentose phosphate pathway due to

In this study, there was a significant decrease in insulin deficiency resulted in decreased intracellular levels
plasma TAC in group II (Diabetic) compared to control of NADPH, which is required for regeneration of GSH
(Group I). This result agreed with that reported by from  its  oxidized  form  GSSG. The   net   result  was non-
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enzymatic disruption of H O  and increased levels of protein conformational changes inducing protein2 2

cellular superoxides, hydroperoxides, hydroxyl radicals as aggregation and cross-linking leading to protein
well as other radicals [30]. insolubilization  [80,  81]. Hence,   the   degree of

The current study showed highly significant glycation  in  the  soluble  protein   fraction  determined
decrease in both erythrocyte reduced glutathione the intensity of cataract as shown in the SDS
concentration and erythrocyte superoxide dismutase electrophoresis (Fig. 1).
(SOD) activity in group IV (HFD + diabetic) compared to In conclusion, this study clearly demonstrated
control (group I). This result is in agreement with the increased accumulation of AGEs and increased lipid
results reported by Mahmoud et al. [44], Zhang et al. [56] peroxidation   products    along   with  impaired
and Gokce & Haznedaroglu [67]. Clarify that the decrease antioxidant  status   in    obesity    and    at  accelerated
in the activities of SOD and GSH in HFD/STZ-induced rate  in  diabetes. Proper control of hyperglycemia,
diabetic rats could be due to inactivation caused by blocking of AGEs pathways by AGEs-inhibitors and low
STZ–generated ROS [44]. fat diet may be beneficial to delay diabetic cataract
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