Global Veterinaria 10 (3): 337-342, 2013 ISSN 1992-6197 © IDOSI Publications, 2013 DOI: 10.5829/idosi.gv.2013.10.3.71221

The Study of the Effect of Multi-Enzyme Supplementation and Different Levels of Tomato Pomace on the Performance and Carcass Characteristics of Broiler Chicks

¹Behrouz Faryabidoust, ²Leila Asadpour and ¹Shahram Nassabian

¹Department of animal science, Rasht Branch, Islamic Azad University, Rasht, Iran ²Department of Veterinary science, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract: Using factories by-products as supplementations in poultry industry, due to their better effects on production qualities and less durability in carcass have a significant position in poultry feeding. To study the effect of commercial tomato processing waste products on the Performance and carcass characteristics of broiler chicks an experiment was performed on Ross-308 broiler chicks. The study was designed to have ten treatments. First treatment was included Ross standard diet without multi-enzyme supplementation and tomato pomace; the second one Ross standard diet with 2 % tomato pomace and without multi-enzyme supplementation; the third, fourth and fifth ones with 3 %, 5 % and 10 % tomato pomace respectively and without multi-enzyme supplementation. From Sixth to tenth treatments %0.04 multi-enzyme was added. Each treatment was replicated four times. One day old chicks were randomly assigned to the treatments in a 2x5 factorial design. During experiment the chicks was fed adlibitum. At the end of the period (42 days) one chick from each treatment was slaughtered and the weight of different parts of carcass, feed intake and Conversion Ratio were measured. The results showed that there was significant difference in live weight, feed intake in starting, growing and final period and weight gain in starting period (P<0.05); however; no significant difference was observed in weight gain in growing and final period (P<0.05). Furthermore, the study on the effect of multi-enzyme supplementation showed that there was significant difference in live weight, carcass, breast, thigh, wing, heart, liver and abdominal fat weight (P<0.05).

Key words: Multi-enzyme · Tomato Pomace · Broiler chicks · Performance · Carcass Characteristics

INTRODUCTION

In poultry industry main expenses are spent on feeding. At present the price of the main ingredients of diet including corn, soybean, fat and by-products has been increased at world market. Like any other industries poultry industry are searching for ways to minimize expenses on feeding. Any improvement at this sector reduces the expenses and finally results in higher economic benefit [1]. Regarding to the limitations of growing field, man and poultry competition on consumption of food resources and high cost of food preparation in poultry industry new foodstuffs no doubt can be a solution. Increase of materials and wastes from industries is one of the environmental concerns. Getting rid of them is a main environmental issue in many countries. However, attention has recently been focused on them and attempt has been made to use them in order to solve environmental issues [2]. Many of these wastes are used as valuable resources of energy and protein [3]. In addition to preventing their wasting and accumulation in environment and subsequent environmental problems, their use in livestock and poultry feeding play a vital role in reduction of expenses on feeding. Tomato pomace is a by -product of tomato processing and ketchup and juice production factories which contains skin, seed and pulp. Ammerman et al. [4] assessed dietary value of tomato pomace and found that dried tomato pomace can be used to feed poultry without any side effect on the performance of broiler chicks. Due to high amount of its protein, it has often been used in place of soybean and corn. Its protein, contains high amount of lysine [2]. Furthermore, high

Corresponding Author: Behrouz Faryabidoust, Department of Animal Science, Rasht Branch, Islamic Azad University, Rasht, Iran. content of fiber and the existence of a compound called tomatin are cholesterol reducing factors [5, 6]. Tomato seed and pomace are good sources of alpha-tocopherol which is used as antioxidant to preserve carcass of broiler chicks [7]. The most important limiting factor in tomato pomace using, is its excessively high amount of fiber [8]. Cell wall which constitutes its main parts functions as a barrier for digestive enzyme to reach at nutrients or as a factor to reduce its speed. As viscosity of digestive materials goes up, decrease the spread of enzymes and slow down food and nutrients movement in digestive tract and consequently decrease digestion, nutrient absorption and food intake [9]. The present research aims to study the effect of using different levels of high fiber tomato pomace with and without multi-enzyme supplementation in the broiler chicks diet on the performance and carcass characteristics of broiler chicks.

MATERIALS AND METHODS

In this design 400 one day old male broiler chicks of Ross 308 were used. The mean weight of chicks in the first day was 350 g. The chicks were assigned in 2x5 factorial schedule to ten treatments and the experiment was replicated four times. The pens were completely separated by wood and metal mesh. Light was provided for 23 hours and one hour was blackout from day 7 up to day 42. The treatments have been as follows:

Treatment 1: Ross standard diet Treatments 2, 3, 4 and 5: Ross standard diet with 2 %, 3%,4%,5% tomato pomace Treatment 6: Ross standard diet with multi-enzyme supplementation Treatments 7, 8, 9 and 10: Ross standard diet with multi-enzyme supplementation and with 2%,3%,5% and 10% tomato Pomace respectively.

Table 1:	The com	positions	of ex	perimental	diets

Ingredient of the Diet: The compositions of the diets, the calculated feeding value of experimental diets, the result of tomato pomace analysis and multi-enzyme components are reported in the Tables 1-4.

Recorded Traits

Feed Intake: It was measured at the end of starter period, growing period and final period. At the beginning of each period the allotted diet to each experimental unit was weighed by digital scale. Feed intake was calculated by the total difference between allotted diet to each experimental unit and remained one.

Weight Gain: Chicks were weighed at the end of starter, growing and final periods. Weight gain value was computed from the weight difference of chicks at the beginning and end of each period.

Conversion Ratio: It was calculated by the following formula:

Conversion Ratio= Whole period Weight Gain / Whole Period Feed Intake

Carcass Separation: At the end of the experiment (at 42 days of age) one chick was randomly selected from each replicate, slaughtered, separated and the weight of carcass and its different organs like breast, wing, thigh, liver, heart and abdomen fat were measured by digital scale.

Data Analysis: The experiment was performed in factorial design. The collected Data was analyzed by SAS (1985) [10] software and averages were compared by Duncan test. Significance was accepted at P<0.05.

	Treat	ment 1		Treati	ment 2		Treat	ment 3	ent 3 Treatment 4 Trea			Treat	eatment 5		
Treatment	S	G	F	S	G	F	S	G	F	S	G	F	S	G	F
Corn	54.5	62.7	58.5	61.7	57.5	53.5	61.2	57	53	60.2	56	52	57.7	53.5	49.5
Soybean meal	37.5	29.5	33.5	28.5	32.5	36.5	28	32	36	27	31	35	24.5	28.5	32.5
Sun Flower	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
DTP	0	0	0	2	2	2	3	3	3	5	5	5	10	10	10
CaCO3	1.2	1.1	1.2	1.1	1.2	1.2	1.1	1.2	1.2	1.1	1.2	1.2	1.1	1.2	1.2
Dicalcium phosphate	1.6	1.5	1.5	1.5	1.5	1.6	1.5	1.5	1.6	1.5	1.5	1.6	1.5	1.5	1.6
Salt	0.23	0.25	0.26	0.25	0.26	0.23	0.25	0.26	0.23	0.25	0.26	0.23	0.25	0.26	0.23
Mineral permix	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Vitamin permix	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Baking soda	0.12	0.1	0.14	0.1	0.14	0.12	0.1	0.14	0.12	0.1	0.14	0.12	0.1	0.14	0.12
DL-Methionine	0.18	0.15	0.21	0.15	0.21	0.18	0.15	0.21	0.18	0.15	0.21	0.18	0.15	0.21	0.18
L-Lisine	0.07	0.1	0.09	0.1	0.09	0.07	0.1	0.09	0.07	0.1	0.09	0.07	0.1	0.09	0.07

Table 2: The calculated feeding value of experimental diets

Calculated content	Starter diets	Grower diets	Finisher diets
ME (Kcal.Kg)	3010	3050	3100
Crude protein %	21.04	19.60	18.18
Lisine %	1.27	1.10	0.97
Methionine+ Cystine %	0.94	0.84	0.76
Methionine%	0.47	0.42	0.36
Arg %	1.31	1.14	1.02
Trp %	0.20	0.18	0.16
Ca %	1.05	0.90	0.85
Available phosphor	0.50	0.45	0.42
Mg %	0.05	0.06	0.05
Na %	21.04	19.60	18.18
Cl %	0.17	0.17	0.16
K %	0.50	0.40	0.50
Cu (mg)	16	16	18
I (mg)	1.25	1.25	1.25
F (mg)	40	40	40
Mn (mg)	120	120	120
VitA)IU)	11000	9000	9000
VitE)IU)	75	50	50
VitK (mg)	3	3	2
VitB12 (mg)	0.016	0.016	0.010
B2 (mg)	8	6	5

Table 3: Chemical analysis of dried tomato pomace

Tomato Pomace					
ME (Kcal/Kg)	3560				
Crude protein %	19.57				
Dry matter	91				
Ether extracts	6.2				
Crude fiber	36				
Nitrogen free extractives	22.54				
Crude ash	4.24				
Ca	0.7				
Р	0.55				
Lysine%	1.08				
Methionine+ Cystine%	0.80				

Table 4: Components of supplemented multi-enzyme

Multi-enzyme	Natuzyme
Cellulase	6000000
Xylase	10000000
β-Glucanase	700000
Amylase	700000
Pektinase	70000
Fitase	1500000
Protease	3000000
Lipase	30000

RESULTS AND DISCUSSION

The study on the effect of different levels of tomato pomace on carcass quality showed that there was significant difference in breast, thigh, wing, heart, liver and abdominal fat weight (P<0.05). However, no significant difference was observed in abdomen filled carcass weight (Table 5). Furthermore, the study of the cumulative effect of tomato pomace and multi-enzyme supplementation on carcass quality showed that there were significant differences in breast, thigh,wing, heart, liver and abdominal fat and carcass weights (P<0.05). The results are shown in (Table 6).

The results of different levels tomato pomace supplementation on performance parameters showed that there was significance difference in feed intake in starter period, growing period, final period and the entire of experimental period (Table 7); however ; no significance difference was observed in weight gain in growing period, final period and the entire of experimental period (P<0.05).

The study of the cumulative effect of tomato pomace and multi-enzyme supplementation on performance showed that there was significance difference in feed intake in starter period, growing period and final period, (P<0.05), in weight gain in starter period, growing period and final period and feed conversion ratio in the entire period (Table 8). Enzyme supplementation improved carcass most of quality and performance parameters due to improvement in tomato pomace digestibility. This results is in agreement with those of Mathlouthi *et al.* [11] who reported that supplementation of exogenous enzymes to the rye-based diet improved weight gain.

Fajri [12] in a study on the effect of dried tomato pomace at the levels of 0,5,10,15,20 % in replacement of soybean and corn on the intestine cytological traits of broiler chicks, found that there was significant effect on the weight gain in growing period and entire period(P<0.01). Growth rate of chicks fed at the levels of 15, 20 % reduced compared to control group; however, feed intake and feed conversion ratio were not affected.

Tomecynski and Soska, [13] reported that tomato Pomace supplementation up to 5 % do not have negative but higher percent limit accessibility to energy from. [14] found that dried tomato pomace can be used in broiler chicken diets up to 20 %. AL-Betawi [3] studied the effect of dried tomato Pomace processed by heat and alkali under sunlight on broiler chicks performance in 5 weeks and no significant differences were observed in term of live weight, feed intake ratio and mortality rate between control and experimental groups. AL-Betawi reported that TP can be used at a level of 10% in broilers diet. King and Zeidler [7] studied tomato pomace supplementation at level of 30 % and found that there is no difference in terms of weight and feed intake ratio. Liadakis et al. [15] evaluated dietary value of tomato Pomace in pultry feeding and reported that dried tomato Pomace up to 3 % can be used instead of alfalfa powder without any

Treatment	live weight	Breast weight	Thigh weight	Wing weight	Heart weight	Liver weight	Abdominal fat weight
0%DTP	2120.63 ^{ab}	428.75 ^a	466.25ª	120.56ª	10.936 ^a	52.735ª	35.506ª
	±49.417	± 128.111	± 18.590	±1.683	± 0.067	±0.067	±7.327
2%DTP	2060.00 ^{ab}	425.25ª	437.50ª	111.25ª	12.623°	53.213ª	30.336 ^b
	±47.767	±156.199	±19.612	±1.340	±0.100	±0.287	±7.312
3%DTP	2012.50 ^{ab}	455.63ª	462.50ª	118.75ª	9.622 ^b	46.060 ^b	26.666 ^b
	±51.427	±183.249	±18.289	±1.055	±0.159	±0.645	±7.190
5%DTP	2138.13ª	433.75ª	423.13ª	105.94 ^b	11.002ª	53.125ª	30.633 ^b
	± 48.794	± 142.657	±18.755	± 1.000	±0.239	± 0.600	±7.271
10%DTP	1975.63 ^b	375.25 ^b	360.63 ^b	93.87°	9.875 ^b	45.125 ^b	29.760 ^b
	±52.567	±155.567	±19.042	±1.568	±0.032	±0.212	±7.167

Table 5: The effect of different level of tomato pomace on carcass quality

Table 6: The cumulative effect of tomato pomace and multi-enzyme supplementation on carcass quality

Treatment	live weight	Breast weight	Thigh weight	Wing weight	Heart weight	Liver weight	Abdominal fat weight
0%DTP+0%ME	0 ^{bc} .2075	00 ^{abc} .405	5 ^{bc} .367	875 ^{dc} .109	270 ^{ab} .11	123 ^{cd} .50	783ª.48
	$131.275 \pm$	49.833±	$29.861 \pm$	$6.957 \pm$	$0.687 \pm$	3.541 ±	5.162 ±
2%DTP+0%ME	3°.1971	25 ^{bc} .371	25 ^{bc} .376	250 ^{de} .96	200°.8	698 ^d .43	135ª.44
	$86.646 \pm$	59.213±	$64.080\pm$	$10.307 \pm$	$0.605 \pm$	$3.808 \pm$	$2.602 \pm$
3%DTP+0%ME	8 ^{bc} .2033	50 ^{abc} .412	50 ^{bc} .387	107.503 ^{dc}	617°.9	810°.53	543ª.46
	$49.561 \pm$	6.454±	31.225±	$2.886 \pm$	$0.263 \pm$	$151.7 \pm$	$6.841 \pm$
5%DTP+0%ME	5°.1972	25 ^{abc} .426	50 ^{bc} .392	de114.390	792°.9	393 ^{cd} .50	510ª.45
	$82.323 \pm$	43.851±	13.229±	$10.054 \pm$	$1.219 \pm$	$6.205 \pm$	5.516 ±
10%DTP+0%ME	0 ^d .1715	00°.348	00°.320	250°.80	607 ^{bc} .10	045 ^d .43	945ª.46
	$56.125 \pm$	$857.26 \pm$	$28.867 \pm$	$20.742 \pm$	$0.772 \pm$	$6.073 \pm$	$1.539 \pm$
0%DTP+0/04%ME	3 ^{abc} .2166	25 ^{ab} .452	00ª.525	250ª.131	602 ^{bc} .10	705ª.74	230 ^b .22
	$94.813 \pm$	178.36±	$10.801 \pm$	$8.539 \pm$	$0.778 \pm$	$978.5 \pm$	$2.859 \pm$
2%DTP+0/04%ME	8 ^{abc} .2148	25ª.479	75ª.498	250 ^{abc} .126	450°.9	972 ^b .62	430 ^{cd} .14
	$129.381 \pm$	$322.76\pm$	12.500±	$4.787 \pm$	0.487 ±	6.895 ±	1.455 ±
3%DTP+0/04%ME	3°.1991	75ª.498	50ª.537	000 ^{ab} .130	627°.9	123 ^b .66	790 ^d .9
	$109.176 \pm$	115.569±	86.554±	$19.148 \pm$	$0.975 \pm$	$4.632 \pm$	$1.164 \pm$
5%DTP+0/04%ME	8ª.2303	25 ^{abc} .441	75 ^{ab} .453	500 ^{bcd} .112	212ª.12	725ª.80	753°.15
	$251.607 \pm$	45.894±	109.268±	$9.574 \pm$	$1.171 \pm$	$8.759 \pm$	$0.941 \pm$
10%DTP+0/04%ME	3 ^{ab} .2236	50°.402	25 ^{bc} .401	500 ^{dc} .107	682°.9	545°.54	575 ^{cd} .12
	$196.697 \pm$	55.937±	48.196±	$11.902 \pm$	$1.097 \pm$	$1.905 \pm$	$1.714 \pm$

Table 7: The results of different level of tomato pomace on performance parameters

	Feed Intake	Feed Intake	Feed Intake	Weight Gain	Weight Gain	Weight Gain	Conversion
Treatment	in starting	in Growing	in Finishing	in starting	in Growing	in Finishing	Ratio
0%DTP 1142.52 ^a	1142.52ª	2002.50 ^{ab}	1808.63ª	729.19 ^{bc}	1067.50ª	460.31ª	2.299ª
	±8.219	±23.00	±25.30	±9.00	±22.83	±47.68	0.901±
2%DTP	1071.90°	2026.25 ^{ab}	1818.31ª	713.81°	1031.88ª	463.69ª	2.187ª
	± 8.188	±23.02	±25.21	±9.29	±23.60	±47.39	0.212±
3%DTP	1142.08ª	1971.25 ^b	1749.56ª	723.63°	1053.88ª	384.25ª	2.208ª
	±8.369	±23.00	±25.62	±9.16	±23.49	±47.54	0.170±
5%DTP	1126.13 ^{ab}	1973.75 ^b	1784.94ª	753.50 ^{ab}	1057.69ª	451.13ª	2.187ª
	±8.341	±23.00	±25.50	±9.01	±23.16	±47.29	0.914±
10%DTP 1104.34	1104.34 ^b	2071.25ª	1592.88 ^b	762.38ª	1045.81ª	405.81ª	2.206ª
	±8.232	±23.59	±25.59	±9.17	±25.83	±47.19	0.507±

	Feed intake	Feed intake	Feed intake	Weight Gain	Weight Gain	Weight Gain	Conversion
Treatment	in starting	in Growing	in Finishing	in starting	in Growing	in Finishing	Ratio
0%DTP+0%ME	75 ^b .1130	45 ^b .2030	50 ^{ed} .1729	63°.693	83°.1093	00 ^{bc} .2250	043ª.2
	782.120±	117.886±	2.122±	838.22±	$30.991 \pm$	$41.912 \pm$	0.093±
2%DTP+0%ME	75 ^b .1130	45 ^b .2030	86 ^{ab} .1721	00 ^{de} .704	20 ^{dc} .1114	25 ^{bc} .2171	282°.2
	45.522±	$57.807 \pm$	3.123±	740.20±	$85.575 \pm$	56.091±	0.509±
3%DTP+0%ME	00 ^b .1130	00 ^b .2030	50 ^{ab} .1722	75 ^{de} .701	95 ^{de} .1101	75 ^{bc} .2233	222 ^{ab} .2
	12.193±	$38.622 \pm$	3.543±	996.35±	$23.616 \pm$	$23.098 \pm$	0.912±
5%DTP+0%ME	38ª.1169	08ª.2069	89 ^{ab} .1716	25 ^{bcd} .740	45 ^{bcd} .1140	50 ^{bc} .2172	991ª.1
	$16.710 \pm$	$101.324 \pm$	$2.145 \pm$	193.33±	$23.708 \pm$	12.654±	0.562±
10%DTP+0%ME	25°.1079	05°.2079	13°.1769	25 ^{cde} .724	45 ^{cde} .1124	00°.2065	248 ^{ab} .2
	9.674±	37.749±	1.719±	991.17±	$26.497 \pm$	$98.980 \pm$	$0.076 \pm$
0%DTP+0/04%ME	88 ^{ab} .1154	58 ^{ab} .2054	56ª.1841	75 ^{abc} .764	95 ^{abc} .1164	25 ^{ab} .2366	113 ^b .2
	10.562±	28.577±	2.127±	103.23±	$123.743 \pm$	$74.754 \pm$	0.390±
2%DTP+0/04%ME	75 ^d .1011	45 ^d .2011	18 ^{bc} .1712	63 ^{cde} .723	83 ^{cde} .1132	75 ^{ab} .2348	192 ^{ab} .2
	16.545±	14.720±	2.908±	$134.45 \pm$	$98.574 \pm$	$67.812 \pm$	0.703±
3%DTP+0/04%ME	63 ^{ab} .1155	363 ^{ab} .2055	60 ^d .1691	75 ^{bc} .745	85 ^{bc} .1145	25 ^{bc} .2191	205 ^{ab} .2
	10.980±	28.577±	1.349±	$180.5 \pm$	$101.106 \pm$	$78.010 \pm$	$0.945 \pm$
5%DTP+0/04%ME	75°.1083	45°.1983	49 ^{bcd} .1807	75ª.766	85ª.1166	75ª.2453	985ª.1
	11.087±	$38.622 \pm$	$1.819 \pm$	994.17±	$75.000 \pm$	55.511 ±	$0.955 \pm$
10%DTP+0/04%ME	38 ^b .1130	08 ^b .2030	250 ^{cd} .1700	20ª.800	35ª.1200	25ª.2461	164 ^{ab} .2
	45.279±	101.324±	0.834±	650.11±	$55.865 \pm$	49.012 ±	0.011±

Global Veterinaria, 10 (3): 337-342, 2013

Table 8: The cumulative effect of tomato pomace and multi-enzyme supplementation on performance parameters

DTP: Dried Tomato Pomace

ME: Multi Enzyme

negative effect. In another study, the effect of enzyme complex including protease, amylase, xylose, pektinase, cellulase, fitase and β -glucanase on performance and intestine viscosity of broiler chicks with basal diet of corn and soy bean was investigated and found that enzyme supplementation reduces intestine viscosity and improves performance which is consistent with the result of the present study [16]. It can be due to the fact that by the reduction of the viscosity of intestine contents multi enzyme in diet limits bacteria growth, helps eaten food to mix with excretions and improves lipid absorption. It is the main mechanism which improves the performance of broiler chicks [17, 18]. The results obtained in the present study indicate tomato pomace can be used in broilers rations at a level of 5% without multi-enzyme and up to 10% with multi-enzyme supplementation from the total diet.

AKNOWLEDGMENTS

The authors are grateful to the Islamic Azad University, Rasht Branch for supporting this research work.

REFERENCES

 Sheppard, A., 2004. The structure and economics of broiler production in England. Special studies in agriculture economics. University of Exeter Publication. pp: 59.

- Persia, M.E., C.M. Parsons, M. Schang and J. Azcona, 2003. Nutritional evaluation of dried tomato seeds. Poult. Sci., 82: 53-57.
- 3. AL-Betawi, N.A., 2005. Preliminary Study on tomato Pomace unusual Feed stuff in broiler diets.Pakistan Journal Nutrition, 4(1): 57-63.
- 4. Ammerman, C.B., R.H. Harms R.A. Dennison, L.R. Arrington and P.E. Loggins, 1965. Dried tomato pulp, its preparation and nutritive value for livestock and poultry. Florida Agric. Exp. Sta. Bull., 691: 1-19.
- Friedman, M., T.E. Fitch and W.H. Yokoyama, 2000. Lowering of plasma LDL cholesterol in hamsters by the tomato glycoalkaloid tomatine. Food Chem. Toxicol., 38: 549-553.
- Kumar, P.G., S. Sudheesh, B. Ushakumari, V.A.K. Kumar, S.S. Vijaykumar and N.R. Vijayalakshmi, 1997. A comparative study on the hypolipidemic activity of eleven different pectins. Journal of food Science and Technology, 34(2): 103-107.
- 7. King, A. and G. Zeidler, 2004. Tomato Pomace may be a good Source of Vitamin E in Broiler Diets. California Agric., 58(1): 59-62.
- 8. Dotas, D., S. Zamanidis and J. Balios, 1999. Effect of dried tomato pulp on the performance and egg traits of laying hens. Br. Polut. Sci., 40: 695-697.
- 9. Bedford, M.R., 2000. Exogenous enzymes in monogastric nutrition-their current value and futurebenefits. Animal Feed Science and Technology, 86: 1-13.

- Statistical Analysis System Institute, SAS Users Guide, Version 5. SAS Institute, Cary, NC (1985).
- Mathlouthi, N., S. Mallet, L. Saulnier, B. Quemener and M. Larbier, 2002. Effects of xilanase and βglucanase addition on performance, nutrient digestibility and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet, Animal Research, 51: 395-406.
- Fajri, M., 2006. The survey of replacement of different levels of deried tomato pomace with soybean meal and corn on performance and gut morphology in broiler chicks. M. Sc. Thesis, Department of animal science, faculty of agriculture, University of Urmia. (In Farsi).
- Tomecynski, R. and Z. Soska, 1976. Estimation of Biological Value and Chemical Composition of Seeds and Skins of Tomatoes. Zeszyty Naukowe Akademii Rolniczo - Technicznej Wolsztynie, 189: 153 - 164.
- 14. Ramesh, K.R. and G. Devegowda, 2005. Effect of enzyme complex on performance, in testinal viscosity and toe ash of broiler chickens fed corn soybean meal based diet.

- Liadakis, G.N., C. Tzia, V. Oreopoulo and C.D. Thomopoulos, 1998, Isolation of tomato seed meal protein with salt solutions, Food Science, 63: 450-453.
- Squires, W., E.C. Naber and V.P. Toelle, 1992. The effect of heat, water, acid and alkali treatment of tomato canner wastes on growth, metabolizble energy value and nitrogen utilization of broiler chicks. Poult. Sci., 71(3): 522-529.
- 17. Smits, C.H.M. and G. Annison, 1996. Non-starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. Worlds Poultry Science Journal, 52: 203-221.
- Choct, M., R. Hughes, J. Wang, M. Bedford, A. Morgan and G. Annison, 1996. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Brtish Poultry Science, 37: 609-621.