Global Veterinaria 7 (5): 438-442, 2011 ISSN 1992-6197 © IDOSI Publications, 2011

A Study of Apoptosis in Harderian Gland of Infected Chickens by IBDV (Infectious Bursal Disease Virus) with Using EM (Electronic Microscope)

Afshin Zakeri and Pedram Kashefi

Department of animal science, Faculty of agriculture, Tabriz branch, Islamic Azad University, Tabriz, Iran, P.C. 5157944533

Abstract: Gumboro disease is one of the important diseases of poultry. This disease caused severe economical losses such as mortality, retardation of growth and immunosuppressant, especially at 3-6 weeks chickens. Histopathologic lesions were appeared in harderian gland and other lymphoid tissues. Destruction of infected lymphocytes with virus and peripheral cells and depletion of lymphocytes in harderian gland were caused by necrosis and apoptosis. In this study, 50 SPF 28 days olds chickens were divided in to tow groups (control and experimental) with 25 chickens in each group. The experimental group was infected orally by 106EID50 in 1 ml of IR499 (IRAN499) virus vvIBDV (very virulent Infectious Bursal Disease Virus); in control group physiological saline solution was used. AT 4th days post infection, all birds were sacrificed and their harderian gland were taken out and prepared for EM assay and light microscopic study. By light microscopic study about numeration of apoptotic cells, statistic difference were appeared (P=0.000) between control and experimental groups. With EM, apoptotic cells were appeared by submargination of chromatin of nuclear membrane concurrent chromatin condensation in experimental group but there were not any apoptotic cells in control group. Apoptosis was appeared by attachment of virus to IgM+ receptors of LB surface and to enforce of cells to secretion of some cytokines.VP2 and 17KD were major viral proteins induced apoptosis in bursa and spleen in infected chickens. In this study and previous studies were demonstrated that IBDV affected chickens with both of necrosis and apoptosis.

Key words: Apoptosis • Electronic Microscope • Gumboro • Harderian Gland

INTRODUCTION

Gumboro is an acute contagious viral disease, especially in 3-6 weeks aged young chicks. In this disease lymphoid tissue especially bursa of fabricius is the target tissue. However, in other lymphatic organs such as spleen, thymus, harderian glands, cecal tonsils and in non lymphatic organs such as breast and femur muscles, mucous gland between preventriculus and gizzard, kidney and bone marrow, create macroscopic and microscopic spoilage [1-3].

The creator agent of disease is a delink RNA virus of Birnaviridae (family) of Avibirna virus genus. Serotype 1 that infects poultry, from the virulence concern, is variable from very virulent strains to a pathogenic strain [4].

Apoptosis or programmed cell death is the organized cellular death that occur according exact genetically

planning. Infected chicks with Gumboro virus, amount of apoptotic cells in bursa of fabricius has a direct relation with tense and amount of RNA virus. Namely, RNA virus multiplication the increase, act as an apoptosis inducer. In early status of infection, the amount of virus RNA is low, whereas, the amount and rate of programmed cell death in spleen and bursa is high.

It seems that, the increase of cytotoxins production, such as Interlockin3 TNF likeness agent and interferon has an important role in apoptosis occurrence this infection. According to the studies 2 to 6 days after infection by Gumboro virus, lyses and number decline of heterophil myelocyte is visible, specially. In 2 to 3 days after infection. According to the Tunel staining, determinate that high cellular classes decline occurred by apoptosis and necrosis [5].

Corresponding Author: Afshin Zakeri ,Department of animal science, Faculty of agriculture, Tabriz branch, Islamic Azad University, Tabriz, Iran. P.C. 5157944533.

It is known the studies, indicate that chicks have receptors (notch-1) on their lymphocyte B cells surface. The stimulation these receptors decrease cellular Stimulation growth apoptosis. and biochemical products of these receptors are "Hairy-1", that induce apoptosis, but as like as Notch-1 doesn't cause any pause in G1stage of cellular growth [5]. Aim of this study is (A Study of Apoptosis in Harderian Gland of Infected Chickens by IBDV (Infectious Bursal Disease Virus) With Using EM (Electronic Microscope)).

MATERIAL AND METHODS

In this research, 50 SPF Leghorn chicks (28 days old) selected and devised in two groups (experimental and control groups) and each 25 chicks placed in a separate room. Then, experimental group, infected with Gumboro virus strain IRAN499 (IR499) that is a high acute strain of Gumboro disease virus. They infected way was oral and it's, amount was 1ml with 106EID50 titer. Whereas for control group physiological serum. At fourth day after infection when mortality, all of dead chicks, test group chicks and control group chicks microscopically studied and harderian glands were removed and get used transported to pathologic laboratory to provide samples for Hematoxylin-Eosin staining, to study by light microscope. Immediately after necropsy, samples was put in 10% formalin buffer and to then samples provided by routine paraffin form and Hematoxylin-Eosin staining. Then in each slides 4 areas selected and studied with number 100 magnifications and apoptotic cells in each group (control and experimental) were counted and determined their mean.

Table 1: Necropsy finding in experimental group

Data statistically analyzed according to "Mann-Whitney test and t test" methods. Some part of mentioned samples (with 1cm. scantling) were put in fixing fluid that was made of 86millitre physiological serum, 10millitre of 37% formaldehyde, 1.16gram NaH₂Po₄.H₂O, 0.27gram NaOH, 4millitre of 25% gluteraldehyde. For second fixation to create suitable slices of samples they were put in osmium tetra oxide and then samples were put in 30, 30, 60, 70, 80, 85, 95, degree ethanol for about 10 minute and in 100, 100, 100, degree ethanol for about 15 minute. After these periods, samples were put in propylene oxide for three times and each period last 10 minute. Finally the samples entered in Epon solution, get formed, cut and staining (uranyl acetate-lead citrate staining) and they were studied with electronic microscope at demandable magnification [6, 7].

RESULTS

Results of the Gumboro virus effect on necropsy finding are given in Table 1.

After statistic analysis (with t test and Mann-Whitney method), the mean of experienced apoptotic cells determined in control group 0.48 ± 0.652 and in test group 27.16 ± 14.775 , with attention to both of test, means had signification difference (p=0.000). With attention to light and electronic microscopes studies, in control group in appreciable number of apoptotic cells that in normal condition exist in harderian gland were observed. In harderian glands of control group chicks, cell's nucleus observed at centre and they were not fragmental or not marginal. Also cells cytoplasm's observed without alteration and fragmentation or various cytoplasmic bubbles (Fig1).

Necropsy finding	Frequency of Necropsy finding
Petechiae in leg muscles	20
Petechiae in breast muscles	4
Petechiae in Isthmus (between proventiculus and gizzard)	9
Kidney changes	5
Bursa edema without bloodshed (gelatin with yellow exudates)	21
Bursa edema with bloodshed veins	10
Atrophic bursa	0
Spleen changes (edema and bloodshed)	8
Hemoraghia in harderian glands	10
Mortality	13

The results of light microscopic, by computation of apoptotic cells, number with ×100 in 4 field and to get their average, are shown below (Table2)

Table 2: The apoptotic computational cells number in harderian glands in the control and experimental groups

	Th	e nu	mbei	t of a	ipopt	otic	cells																			
No of chickens	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	P- value
Control group	0	0	0	0	2	1	1	1	0	0	2	1	1	1	0	0	0	0	0	0	0	1	1	0	0	P=0.001
Experimental group	31	19	10	20	59	12	43	55	22	10	14	29	32	21	17	26	18	19	15	27	55	52	23	16	34	P=0.001

Means with unlike superscripts letters differ (p<0.01)

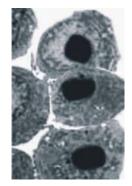


Fig. 1: Shows lymphocytes cells of harderian gland. As it shown lymphocyte cells are absolutely natural, cells nucleus are in center without fragmentation or chromatin marginalization. Cell cytoplasm has no change and fragmentation or different bubbles. uranyl acetate-lead citrate staining ×8000.

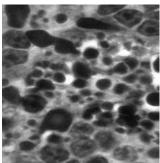


Fig. 2: The cross micrograph of harderian gland in septic chicken to Gumboro virus (experimental group): A few number of apoptotic cells are visible with fragmentation and certain density of chromatin. The Hematoxilen-Eosin staining× 100

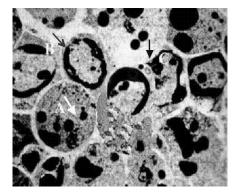


Fig. 3: The existence of apoptotic cells in harderian gland are observed together chromatin density and their piecemeal and with aggregation under the nucleus membrane. In the chromatin themes crescent aggregation are observed. The uranyl acetate-lead citrate staining ×8000 Within harderian glands of infected chicks, apoptotic cells observed with definite chromatin fragmentation and concentration in Hematoxilen-Eosin staining (Fig.2).

Within electron microscopic study, apoptotic cells of harderian glands, with cell cytoplasm destroyed, nucleus fragmentation, chromatin concentration and lunette constriction were observed. Sting "A" shown the chromatin of nucleus apoptotic cells in situation fragmentation and marginal. Sting "B" show a view of apoptotic cell with lunette constriction, marginal and fragmentation of chromatin under nucleus membrane. Finally sting "C" show apoptotic cell that get fragmentation and concentrate, also constriction of chromatin under nucleus membrane was comprised (Fig.3).

Generally, electronic microscopic studies on the harderian glands (control and experimental group), determined that control group had received physiological serum, inappreciable number of apoptotic cells, that normally experience, were observed. When as test group chicks that received infectious virus, besides necrosis, apoptotic lymphocytic cells were observed as concentrated and fragmentated chromatin and in some cases lunette chromatin, under nucleus membrane of apoptotic cells that determine apoptosis occur in lymphocytic cells and harderian glands peripheral cells.

DISCUSSION

According to the other researchers studies, it is assignable that beside occurring necrosis in lymphocytic cells, specially lymphocytes exist in bursa, spleen and other lymphatic organs, also apoptosis is one of important processes that occur in these organs, during infecting with Gumboro virus. Virus, after infecting macrophages and lymphatic cells of duodenum, jejunum, Cecum, exited to liver and was infected liver coopfer cells and cause viremia and then exited to bursa and start its main reproduction and create histopathological alterations as follow [4].

- Inhibits stem cell substitution to mature B lymphocyte.
- B lymphocyte cytolysis by necrosis.
- Lymphatic cells apoptosis.

Therefore B lymphocytes decline and humeral immune system weakness and flock will be sensitive to all kinds of infection such as bacterial infections and vaccination programs defeating, that caused by decreasing production of antibodies [8]. Also in these modification, central region of bursa afflicted to cystic cavitations that it cause is lymphatic cells of bursa lymphatic follicles necrosis and the number of plical fold were decreased [9]. B and T lymphatic cells, in Gumboro disease, are target cells for cellular death. As apoptosis in these cells are occurred in three processes.

At first stage apoptosis starter signals affected by Fas (CD95) receptors, were began and at second stage, cells were afflicted to morphologic modification and chromatin concentration, cytoplasmic vacuolation and activate internal endonoclease and at third stage apoptotic bodies digested by macrophages [10]. Immatase B lymphocyte cells that have surfaced IgM⁺ receptors are major target of Gumboro's virus [11]. According to the researchers studies, Gumboro's virus after contact with IgM^+ (on the surface of LB) with a content of a VP₂ and 17KD (NS) proteins and with BCL₂ proceeds inhibiting, cause apoptosis in lymphatic cells, as they compel to produce some of cytokines such as ALFA TNF, interlokin 6, 8 alike agents and NOIF and secretion of No by macrophages, at first excite the apoptosis in peripheral cells and then with infectious progress apoptosis excite infected cells. This process is visible in illustration of electron micrograph with chromatin fragmentation and concentration and chromatin accumulation under nucleus membrane surface [12, 13]. According to the researcher's studies on Gumboro virus's effects on bursa and spleen and disease progress with use up necrosis, apoptosis excites and cytokine producers realized statistical significant results of harderian glands apoptotic cells count in this study. It is mean that destruction effects and immune system weakness were not only by necrosis effects but apoptosis and some of cytokines products had important role in disease progress [14-16].

REFERENCES

- Bozorgmehri Fard, M.H., A. Fotowati, F. Nik Nafs, H.R. Moshfegi and B. Shojadost, 1998. Diseases of Poultry. Training and Research Unit of Agriculture Assistance of Kosar Economic Organs Press. IRAN. pp: 315-322.
- Tanimura, N. and I.M. Sharma, 1997. Appearance of T cells in the bursa of fabricius and cecal tonsils during the acute phase of infectious bursal disease virus infection in chickens. Avian Dis. 41: 638-45.

- Vegad, J.L., 2004. Infectious bursal disease. Poultry diseases, A guide for farmers & poultry professionals. Vegad, J.L. International Book Distribution Co., pp: 21-29.
- Baxendale, W., 2002. Poultry Diseases (Pattison, F., M. Alexander, D. Faragder and T. Brinaviridae eds.). 5th Edition, W.B. SAUNDERS. Jordan, pp: 319-323.
- Jungmann, A., N. Herman and H. Muller, 2001. Apoptosis is induced by infectious bursal disease virus replication in productively infected cells as well as in antigen-negative cells in their vicinity. J. General Virol., 82: 1107-1115.
- Sharma, J.M., S. Rauteuschlein and H. Yeuh Yeh, 2002. The role of Tcells in protection by an inactivated infectious bursal disease virus vaccine. Elesevier, Veterinary Immunology and Immunopathol., 89: 159-167.
- Vasconcelos, A.C. and K.M. Lam, 1994. Apoptosis in chicken embryo induced by the infectious bursal disease virus. J. Comp. Pathol., 112: 327-338.
- Genova, K., 2000. Influence of the Infectious Bursal Disease virus strians on the avian immune system. Veterinary Institute og Immunology, LTD, 1 Adam Mitzkewich str. 1360 Sofia, Bulgaria.
- 9. Hiari, K. and T. Funakoshi, 1987. Sequential changes in number of surface immunoglobin bearing B lymphocyte in infectious bursal disease virus infected chickens. Avian Dis., 25: 484-96.
- Fernandez, A.A., S. Martinez and J.F. Podriguez, 1997. The Major antigenic Protein of Infectious Bursal Disease Virus, VP2, Is an Apoptotic inducer. Journal of Virology, Oct., pp: 8014-8018.
- In-Jean, K. and M. Sharma, 2000. IBDV-induced bursal T lymphocyte inhibit mitogenic response of normal splenocytes. Veterinary Immonology and Immonopathol., 74: 47-57.
- 12. Inoue, M. and A. Fujita, 1999. Lysis of Myelocytes in chickens Infected with infectious Bursal Disease virus. Vet Pathol., 36: 146-151.
- Katarzyna, D., R. Gaelle, S. Krzysztof, T. Didier, M. Zenon and N. Eterradossi, 2002. Antigenic characterization of Polish IBD virus strians. Department of poultry diseases, National veterinary research Institute, 24-100 Pulawy. Poland. Bull. Vet. Inst. Pulawy, 46: 45-52.
- Kun, Y. and N. Vikram, 2001. Induction of Apoptosis in vitro by the 17-Kda Nonstructural Protein of Infectious bursal disease Virus: Possible Role in Viral Pathogenesis. Virol., 285: 50-58.

- Saif, Y.M. and D. Lukert Phil, 2003. Infectious bursal disease. Diseases of Poultry. Saif, Y.M., H.J. Barnes, J.R. Glisson, A.M. Fadly, L.R. McDougald and D.E. Swayne, 11th Edition. Ablackwell Publishing Company, Iowa State Press, pp: 161-179.
- Tanimura, N. and J.M. Sharma, 1998. In-situ apoptosis in chicken infected with infectious bursal disease virus. J. Comparative Pathol., 118: 15-27.