Efficacy of Commonly Used Anthelmintics Against Gastrointestinal Nematodes in Naturally Infected Sheep in Sebeta, Central Ethiopia

Dereje Bahiru, Fitsum Dulo and Negesse Mekonnen

Department of Microbiology, Immunology and Veterinary Public Health, School of Veterinary Medicine, Wolaita Sodo University, P.O. Box 138, Wolaita Sodo, Ethiopia

National Animal Health Diagnostic & Investigation Centre, P.O. Box 04, Sebeta, Ethiopia

Abstract: A study was conducted to determine and compare the efficacy of the albendazole, tetramizole and ivermectin against gastrointestinal nematode in naturally infected sheep in Sebeta, Ethiopia. One hundred sixteen sheep were sampled of which 60 sheep with faecal egg count above 150 were randomly allocated into four groups, each group consisting 15 sheep were assessed to determine anthelminthic efficacy through faecal egg count reduction test (FECRT). The first group was treated with albendazole, second with tetramisole, third with ivermectin and fourth kept as untreated to serve as control. Faecal samples were collected on day first prior to administration of treatment followed by day 7 - 14 post treatment. The FECRT revealed that the presence of ivermectin resistance while albendazole and tetramizole were effective against sheep gastrointestinal nematodes in the study area. In conclusion, farmers and professionals must observe the preventive measures to avoid a wide spread of ivermectin resistance, otherwise the presence of resistant parasites and ineffective treatment may harm the productivity of sheep.

Key words: Albendazole · Anthelminthic resistance · Fecal egg count reduction test · Ivermectin · Sheep nematodes · Tetramizole

INTRODUCTION

Livestock is the mainstay of the vast majority of Ethiopian people. Among this livestock sector, small ruminant constitute a major part [1]. It is also an important sector providing a significant contribution to gross domestic and export products and raw materials for industries [2]. According to recent estimates, Ethiopia is home to some 29.33 million sheep and 29.11 million goats [3]. Estimates indicated that small ruminants account for 35% of the meat and 14% of the milk consumption, as well as the biggest share of hide and skin export earnings in Ethiopia [4].

Sheep are of great importance as major sources of livelihood and contribute to the sustenance of landless, smallholder and marginal farmers especially to the poor in the rural areas throughout the developing countries. In Ethiopia scenario, similarly like other developing countries, sheep are very important for resource-poor smallholder systems of rural areas due to their ease of management, short generation cycles and high reproductive rates which lead to high production efficiency and significant role in provision of food and generation of cash income. They serve as a living bank for many farmers, closely linked to the social and cultural life of resource poor farmers and provide security in bad crop years [6].

However, the productivity of this huge small ruminant population remains marginal due to prevailing diseases, poor nutrition and husbandry systems and lack of effective veterinary services [7]. Gastrointestinal nematodes (GINs) constitute one of the greatest disease threats for grazing livestock worldwide. Infection with helminth parasites results in both clinical and sub-clinical diseases causing low productivity due to stunted growth, insufficient weight gain, delay of puberty, anemia, poor feed utilization and mortality [8], hindering optimization of the economic benefits from small ruminants [9].
In Ethiopia, there are numerous studies relating small ruminants and gastrointestinal nematode infections with reports of widespread prevalence rates of GI helminthic infestation in different parts of the country, as reported [10-12]. To improve this problem, parasite control is commonly carried out with the use of anthelmintics, often indiscriminately and without any epidemiological knowledge [13]. Thus, the use of a suppressive regime added to inaccurate management strategies contributes to the selection and establishment of parasites that are resistant to the anthelmintics [14].

As parasite resistance is an inherited trait, after every generation there may be an increase in individual parasites that would be able to survive drug treatment [14]. Parasite resistance is an alarming scenario in small ruminants worldwide, but there are limited data on the magnitude of parasite resistance in sheep in Ethiopia and no data in the study area.

Therefore, the objective of this study was to evaluate the efficacy of the most used anthelmintic against gastrointestinal nematodes of sheep in NAHDIC for research purposes, Sebeta, Central Ethiopia and its surroundings (HaroJilaFulaso) smallholder farmers.

MATERIALS AND METHODS

Study Area: The study was conducted from November 2016 to April 2017 in and around Sebeta Awas woreda of FinfineZuria special Zone, Oromia National Regional State, Ethiopia. The geographical (astronomical) location of Sebeta Awas is approximately located at 8°54’40”N latitude and 38°37’17”E longitudes, 20 km southwest of Addis Ababa with the maximum and minimum altitude of 3380 m and 180 m above sea level respectively. The annual rainfall of the area is about 1200 mm with maximum and minimum temperature of 28°C and 11.3°C respectively. The main livestock species in the woreda are cattle, sheep, goat, horse, mule, donkey and poultry with estimated population of 151400, 25109, 20978, 4997, 2450, 26100 and 69936 respectively [15].

Design of Experiment: Initial faecal samples were collected from each animal directly from rectum, placed individually sealed container and transported to NAHDIC Parasitology laboratory to perform parasite egg counts per gram employing Mc Master technique. Out of 116 sheep tested, 65 were positive but epg greater than or equal to 150 is taken into treatment and control group. Based on these the animals were randomly selected and allocated into treatment groups (Albendazole, Ivermectin and Tetramisole) and untreated (control) group. Each group consisting 15 animals were treated with Albendazole, Ivermectin, Tetramisole and a control group that received no treatment. Faecal samples were collected again from animals on days: 7-10, 10-14 and 5-7 from Albendazole, Ivermectin and Tetramisole group respectively and also from control group samples, then floatation and Mc Master techniques were again employed for the second time in order to determine the drug efficacy. The details of the drugs used in the tests are presented in Table 1.

Efficacy Evaluation: Drug efficacy was determined by the faecal egg count reduction test (FECRT) and the percentage reduction was calculated according to the guideline provided by World Association for the Advancement of Veterinary Parasitology (WAAVP) recommendation [16]. The faecal nematode egg count reduction percentage (FECR%) was determined by using a formula: FECR% = 100 × (1 - Mt/Mc); Where Mt and Mc are the arithmetic mean EPG in the treated (t) and untreated control (c) groups at days 7 to 14 post treatment according to method described by Coles et al. [16] and Coles et al. [17].

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
<th>Manufacturer</th>
<th>Dosage mg/kg</th>
<th>Route of Administration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albendazole</td>
<td>Albenda-QK 300 mg</td>
<td>Chengdu Qiankum Veterinary Pharmaceuticals Co. Ltd., China</td>
<td>7.5</td>
<td>Oral</td>
</tr>
<tr>
<td>Tetramizole HCL</td>
<td>Ashitegra 600 mg</td>
<td>Ashish Life Science Pvt Limited., India</td>
<td>15</td>
<td>Oral</td>
</tr>
<tr>
<td>Ivermectin</td>
<td>Ivervic 1 Injection</td>
<td>Shenyang Sunvictor Pharmaceutical Co., Ltd., China</td>
<td>0.2</td>
<td>Subcutaneously</td>
</tr>
</tbody>
</table>

Table 1: Description of the anthelmintic drugs used in the FECRT for efficacy test.
Reductions in efficacy is considered to exist if the FECRT percentage of an anthelmintic treatment is <95% and the lower 95% confidence limit for the reductions is <90% [16]. If only one of the two criteria is met reductions in efficacy is suspected.

Data Analysis: The efficacy of the anthelmintics was analyzed using the RESO 2.01 Analysis Software [18]. Data was analyzed considering resistance when the effectiveness of the anthelmintic was lower than 95% and when the confidence interval was below 90% [17].

RESULTS

This study revealed that great proportion of the study sheep were with light degree of infection (60%) while only small proportion were with moderate (15%) and heavy degree (25%) of strongyle type pretreatment Epg as shown in Fig. 1. The results for the efficacy test in sheep is shown on table 1. According to RESO software, a suspect of resistance was identified for ivermectin because the treatment revealed an egg count reduction just 97% with a lower confidence interval below 90% i.e. 84% while Albendazole and Tetramizole revealed an egg count reduction just above 95% (98 and 100%, respectively) with a confidence interval above 90% confirming no anthelmintic resistance.

Strongyle was found predominantly in 56% of pre-treatment faecal examination and followed by small incidence of haemonchus (3%), trichuris (3%) and ostertagia (1%).

DISCUSSIONS

The fecal examination for the presence of parasite eggs in the pre-treatment fecal samples revealed that strongyle (56%) as predominant species. This result is higher than that of 37.63% of strongyle eggs report in Gondar [19] but lower than the report in Asella [20] and Areka Agriculture Research Centre [21] where 74% and 69% prevalence rate recorded respectively. The prevalence of Trichuris (3%) in the current study was fairly in agreement with report of 3.7% in Asella [20] but slightly higher than 1.5% report in Areka Agriculture Research Centre [21], Southern Ethiopia and lower than 4.5% report in western Oromia [22]. Similarly, other nematodes such as Haemonchus and Ostertagia were also find to lesser extent.

The mean eggs per gram (EPG) revealed that 60% of the sheep were lightly while 15% and 25% of study sheep were moderately and heavily infested respectively. This finding was different from the record in Asella where 30.04% of the sheep were lightly while 40.34% moderately and 29.62% heavily infested [20]. This difference could be due to the difference between the management and production system of examined animals and geographical and environmental location of the study area.

Estimating the status of anthelmintic resistance is the most important step in establishing and maintaining effective parasite control of nematode parasites in livestock, especially for small ruminants. In this study, Anthelmintic efficacy tests were conducted using three brands namely; albendazole, ivermectin and tetramizole commonly available on the local markets and anthelmintic resistance was considered to be present if the percentage reduction in faecal egg counts was less than 95% and the lower limit of the 95% confidence interval was less than 90% [16]. If only one of these criteria is met, anthelmintic resistance is suspected. Based on this criterion, a suspect of resistance was identified for ivermectin because the treatment revealed an egg count reduction just 97% with a lower confidence interval below 90% i.e. 84% while albendazole and tetramizole revealed an egg count reduction just above 95% (98 and 100%, respectively).
with a confidence interval above 90% confirming no anthelmintic resistance.

In present study, treatments with albendazole revealed susceptibility with 98% of reduction of the nematode egg in the post-treatment fecal analysis with a confidence interval above 90% confirming very good efficacy of tested products. This finding was in agreement with report from different parts of the country [23-27] where the effectiveness of albendazole against treatment of nematode parasite with percent of reduction in 99.34%, 98%, 100%, 96% and 99.08% reported. However, our finding was disagreement with the report from Areka Agriculture Research Centre [16], Haromaya University [28] and Western Oromia [24] where faecal egg count reduction of 90.05%, 87% and 98% with lower confidence interval below 90% reported respectively. The difference of the current and the previous studies in the efficacy of albendazole against nematode treatment might be attributed to several factors such as poor quality drugs, continuous under dosages treatments at the sheep dose rate by farmers due to low bioavailability in sheep, misuse and inappropriate treatment by owners. Such factors have been also suggested to contribute to lower efficacy [29-31].

In this study, tetramizole had a very good efficacy in reducing gastrointestinal nematodes with percent faecal egg count reduction of (100 %) in sheep. This finding fairly agrees with previous study report in Dale district [32], Areka town [21] and Bedelle district [26] and Jeldu district [25] and Jigjiga [33] and Wolaita [23] and Western Oromia [24] where effectiveness of tetramizole with percent of reduction reported as 97.5%, 98.5%, 98.5%, 100%, 100%, 100% and 100%, respectively. On the other hand, this result is different from the study report in North Gondar [27] where the lowest efficacy of tetramizole with 74.29% percent of reduction recorded respectively. The differences of the efficacy of those tested drugs from other studies could be due to the difference in the frequency, dosage, misuse of drugs and ways of utilization of the drugs among the sheep on station and at farmers hand in addition to the difference study locations.

Ivermectin was not effective in reducing fecal egg count in the current study in sheep with the lower confidence limit of 84% which was in agreement with the previous study [21,27,34]. Contrary, this result was in disagreement with report at Dale District [32] and Balochistan [35] where efficacy of ivermectin recorded as 96.7% and 98% respectively. The discrepancy between the current and previous study might be associated to high frequency of anthelmintic treatment of these drugs against nematode parasite in the study area. The use of limited group of drugs for a long period at high frequency may favor the development of resistance. Moreover, sheep raisers do not have any idea on anthelmintic rotation [33] that favors anthelmintic resistance.

CONCLUSION AND RECOMMENDATIONS

Parasite control is usually carried out with the use of anthelmintics, often indiscriminately and without any efficacy evaluation technique. In this study, gastrointestinal nematodes of sheep in the study area were susceptible to albendazole and tetramizole fully effective. On the other hand, ivermectin showed lower efficacy for sheep nematode in the study area.

Based on the above conclusion, the following recommendations are forwarded:

- Avoid frequent and unnecessary treatments of anthelmintics, opting instead for strategic deworming
- Farmers should be educated with proper veterinary extension about the importance of use of efficacious anthelmintics.
- Give adequate advice for the farmers and persons who are in contact to animals to use anthelmintic drugs which are more effective
- Further studies are needed to assess the status of efficacy of widely used anthelmintic drug in different agro-ecology, species of animals and management systems with economic impact of the problem.

ACKNOWLEDGEMENTS

We would like to extend our heartfelt appreciation to National Animal Health Diagnostic and Investigation Centre staff especially for their cooperation in using the animals for this research and all rounded Support.

REFERENCES

14. Sebeta Awas Agricultural Office, 2015.

