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A New Modified of McDougall-Wotherspoon Method for
Solving Nonlinear Equationsby Using Geometric Mean Concept

Nasr Al-Din Ide

Department of Mathematics, Faculty of Science, Aleppo University, Syria

Abstract: Finding the roots of nonlinear algebraic equations is an important problem in science and
engineering. Many mathematical models in physics, engineering and applied science, are applied with nonlinear
equations. Later many methods developed for solving nonlinear equations. The efficient methods to find the
roots of nonlinear equations has been developed in recent years [1-35], Natas a Glis ovic´et al. [1] developed
the method of T.J. McDougall and J. Wotherspoonwhich have derived a multistep iterative method with
memory as a new modificationof the classical Newton’s method [2]. We verified on a number of examples and
numerical results obtained show the efficiency of the present method which is convergencesbetter than of the
modification of Glis ovic´ et al.

Key words: Nonlinear  equations   Newton’s  Method   Method  of  Glis ovic´   T.J.  McDougall  and
J. Wotherspoon  Geometric Mean  Harmonic mean  Arithmetic mean

INTRODUCTION The Present Method: Consider a nonlinear equation (1),

Solving nonlinear equations (1), is one of the most T.J. McDougall and J. Wotherspoon Which have derived
important problem in scientific and engineering a multistep iterative method with memory [2],
applications. There are several well-known methods for
solving nonlinearalgebraic equations of the form: y  = x (2)

f (x) = 0 (1)

where f denote a continuously differentiable function on
[a, b] C R and has at least one root , in [a, b] Such as
Newton’s Method, Bisection method, Regula Falsi followed by (for n  1)
method, Nonlinear Regression Method and several
another methods see forexample [3-35]. Here we describe (4)
a new method by using geometric Meanof xn and yn
instead of harmonic meanused by Glis ovic´et al. [1]
which wasreplaced byarithmetic mean of xn and yn used
by T.J. McDougall and J. Wotherspoon [2] which (5)
presented a simple modification of Newton’s Method
which converges faster than the Newton’s Method with
a convergence order of 1 + 2.4142. We verified on a Glis ovic´ et al replace in this method of T.J.
number of examples and numerical results obtained show McDougall and J. Wotherspoon, harmonic mean by
that the present method convergences better than of the arithmetic mean of xn and yn, then new iterative scheme
modification of Glis ovic´ et al. obtained for n  1, preserving y  and x .

consider  the  following  iterative  method proposed by

0 0

(3)

0 1



1 1

1 1

( )
2 .'

n
n n

n n

n n

f xy x
x yf

x y
− −

− −

= −
 
 + 

1
( )

2 .'

n
n n

n n

n n

f xX x
x yf

x y

+ = −
 
 + 

0 0
1 0 0

00 0

( ) ( )
'( )'( .

f x f xx x x
f xf x y

= − = −

( )1 1

( )
' .

n
n n

n n

f xy x
f x y− −

= −

( )1
( )

' .
n

n n
n n

f xx x
f x y

+ = −

0
1 0

0

( )
'( )

f xx x
f x

= −

1 1

( )
'( . )

n
n n

n n

f xy x
f x y− −

= −

1
( )

'( . )
n

n n
n n

f xx x
f x y+ = −

1

1
 ,  ,n n

n

x x then stop else
x
+

+

−
≤

Comput. & Appl. Math. Sci., 4 (2): 35-38, 2019

36

Example 1:
(6)

(7)

Now, in present method, we replace arithmetic mean
of x  and y , by geometric mean, then we obtain then n

following New scheme, 

y  = x (8)0 0

(9)

followed by (for n  1)

(10)

(11)

Algorithm of the Present Method:
Give x  initial value (number real), give the tolerance0

number  (for stopping) and take y  = x .0 0

Calculus of

Calculus (for n  1):  and 

Calculus of stopping condition: if

Take n=n+1 and return to (3).

Examples: In this section, we shall check the
effectiveness of present method (8)-(11). First numerical
comparison for the following test examples taken in [1, 2]
and from [26-31] have been employed, we compare
present method (PM) with the Newton’s method (NM),
the Weerakoon-Fernando method (WFM), Ozban’s
variant of method (OM), the Frontini-Sormani method
(FSM), the Kou-Li-Wang method (KLWM), Wang’s
method (WM), McDougall-Wotherspoon method
(McDWM) and Glis ovic´et al method (GOM).

 f (x) = x - e -3x+2, x =3,  = 0.257302854…1 0
2 x

Table 1: Numerical results forf (x)1

Method Number of iteration(i ) |f(x )|i

NM 8 2.28.10 25

WFM 6 2.80.10 16

OM 6 1.33.10 22

FSM 6 4.85.10 25

KLWM 6 5.65.10 13

WM 5 1.71.10 33

McDWM 7 5.88.10 50

GOM 7 8.97.10 25

PM 4 5.89.10 197

Example 2:
f (x) = xe  - sin x + 3cosx + 5, , x  = -2,  = - 1.207647827…2 0

x2 2

Table 2: Numerical results forf (x)2

Method Number of iteration(i ) |f(x )|i

NM 11 1.08.10 4

WFM 7 1.76.10 4

OM 7 5.99.10 10

FSM 7 4.66.10 7

KLWM 7 2.44.10 10

WM 7 6.22.10 6

McDWM 9 1.19.10 10

GOM 9 8.83.10 10

PM 5 8.51.10 13

Example 3:
f (x) = e  – 1, x  = 3.25,  = 33 0

x2+7x-30

Table 3: Numerical results forf (x)3

Method Number of iteration (i) |f(x )|i

NM 11 1.58.10 4

WFM 7 1.86.10 4

OM 7 1.83.10 9

FSM 7 2.47.10 6

KLWM 7 2.74.10 7

WM 7 1.53.10 5

McDWM 9 2.95.10 9

GOM 9 2.85.10 9

PM 4 6.75.10 33

Example 4:
f (x) = ln(x  + x + 2) - x + 1, x  = 3,  = 4.152590736…4 0

2

Table 4: Numerical results forf (x)4

Method Number of iteration (i) |f(x )|i

NM 7 7.03.10 68

WFM 4 1.22.10 116

OM 5 3.66.10 88

FSM 5 4.74.10 80

KLWM 5 3.39.10 53

WM 5 3.36.10 86

McDWM 6 2.00.10 169

GOM 6 2.73.10 168

PM 4 4.99.10 258
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CONCLUSIONS 10. Jarratt, P., 1969. Some efficient fourth order multipoint

In this work, we have proposed a new iterative 11. Jarratt,  P., 1966. Some fourth order multipoint
method by using the geometric mean. The efficiency of iterative methods for solving equations. Math.
this method is shown for some test problems, comparison Comput., 20: 434-437.
of  the  obtained  resultis  given  with  t he existing 12. King,  R.,  1973.  A  family  of  fourth order methods
methods such as with the Newton’s method (NM), the for nonlinear  equations.  SIAM  J.   Numer.  Anal.,
Weerakoon-Fernando method (WFM), Ozban’s variant of 10: 876-879.
method (OM), the Frontini-Sormani method (FSM), the 13. Hou, L. and X. Li, 2010. Twelfth-order method for
Kou-Li-Wang method (KLWM), Wang’s method (WM), nonlinear equation.  Int.  J.  Res.  Rev.  Appl.  Sci.,
McDougall-Wotherspoon method (McDWM) and 3(1): 30-36.
Glis ovic´et  al.  method (GOM), it is shown that this new 14. Zheng, Q., J. Li and F. Huang, 2011. An optimal Ste
methodis more efficient than these existing methods and ensen-type family for solving nonlinear equations.
this method has lowest number of iteration and converges Appl.Math. Comput., 217: 9592-9597.
faster than the other methods. 15. Hu, Z., L. Guocai and L. Tian, 2011. An iterative
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