Academic Journal of Plant Sciences 12 (3): 43-51, 2019

ISSN 1995-8986

© IDOSI Publications, 2019

DOI: 10.5829/idosi.ajps.2019.12.3.43.51

Carcass Characteristics of Menz Ram Lambs Fed Grass Hay Basal Diet and Supplemented Wheat Bran and Lentil Broken Screening

¹Wude Tsega, ²Berhan Tamir and ³Girma Abebe

¹Ethiopian Institute of Agricultural Research, Debra Zeit Agricultural Research Center, Ethiopia ²Addis Ababa University, College of Veterinary Medicine and Agriculture, Ethiopia ³Hawassa University College of Agriculture, Ethiopia

Abstract: An experiment was conducted to evaluate carcass characteristics of Menz ram lambs fed grass hay basal diet and supplemented different combination of wheat bran and lentil broken screening. The treatments were T_1 (30g wheat bran 133g lentil broken screening), T_2 (235g lentil broken screening only), T_3 (285g wheat bran only) and T_4 (227g wheat bran and 120 lentil broken screening). Twenty four Menz ram lambs of about 8 to 10 months of age were grouped into six blocks based on their initial body weight and treatments were randomly distributed to each block of four animals. Six animals per treatment were used for feed intake and body weight change evaluation. Five lambs from each treatment were randomly picked and slaughtered for carcass evaluation. Wheat bran and lentil screening combination affected ($P \le 0.01$) the daily total dry matter intake (TDMI), final body weight, total weight gain, average daily weight gain and FCE of lambs with the highest value recorded from T_4 diet categories. The slaughter body weight was lowest ($P \le 0.001$) in T_1 than T_2 , T_3 and T_4 . The carcass yield of lambs was increased ($P \le 0.01$) at T_4 supplemented groups than at T_1 and T_2 diets. Except the dry matter percent of carcass fat ($P \le 0.001$), all carcass quality parameters were not affected ($P \ge 0.05$) by the concentrate diet combinations. Body weight gain, carcass yield and quality of Menz ram lambs were better at feeding plan of grass hay basal diet and 227g wheat bran and 120g lentil broken screening concentrate mixture supplementation.

Key words: Carcass · Combinations · Lamb · Lentil Broken Screening · Sheep · Wheat Bran

INTRODUCTION

Thought, sheep producers may not exactly explain animal nutrient requirement related factors that contribute to low productivity of the animals; scientific works put nutrition to be the major determinant factor affecting productivity. In many animal production systems, approximately two-thirds of improvements in livestock productivity can be attributed to improved nutrition [1]. Feed types and nutritional levels are related to carcass yield, carcass quality and fat tissue development and composition of the meat [2, 3].

Moreover, excessive or scarce nutrient levels in the diet impair the feed conversion efficiency of lambs rather balanced feed can improve production and feed efficiency. Dietary energy to protein ratio has implications on animal performance and can influences carcass and/or

meat fatness and the muscle deposition [4]. Appropriate supplementing animals with dietary energy and protein rich diets have proven to improve animal performance and profitability [5]. Thus, identifying the best combination of dietary energy and protein source feed supplement is important in practical feeding system to avoid under or over feeding of nutrients to the animals.

According to the conducted survey work result [6] wheat bran and lentil broken screening locally called "Ymiser kik bitari (Elet)" are among the most predominant dietary energy and protein source concentrate supplements use for sheep fattening in and around Debre Berhan Town, where surroundings are the niches for Menz sheep breed. Thus, developing the best feed package from locally available feed resources is preferable to recommend easily adoptable complete feed package. Proper and easily available feed package is among the

major components for sustainable sheep production [7]. In Ethiopia different sheep fattening experiments undertaken by different researchers showed that dry matter, body weight change and carcass characteristics of sheep are affected by feed types [8, 9]. However, information on dry matter intake, body weight change and carcass characteristics of Menz ram lambs fed grass hay basal diet and supplemented with wheat bran and lentil broken screening mixture was limited.

Therefore, it was worthwhile to evaluate dry matter intake, body weight change and carcass characteristics of Menz ram lambs fed grass hay basal diet and different wheat bran and lentil broken screening mixtures supplementation.

MATERIALS AND METHODS

Experimental Site: The feeding and carcass evaluation trials were conducted at Debre-Zeit Agricultural Research Center located at about 45 km from Addis Ababa at altitude of about 1900 meters above sea level. The mean annual rainfall and mean maximum and minimum temperatures for the area are 1100 mm and 28.3°C and 8.9°C, respectively [10].

Experimental Animals: Experimental animals were 24 Menz-sheep-breed ram lambs. The age range of lambs was from about 8 to 10 months and the initial body weight was 17.97 ± 0.28 kg (Mean \pm SE). Age was estimated based on dentition and information obtained from the owners. Lambs were quarantined for 3 weeks during which they were treated against internal and external parasites with albendazole bolus and acarimic spray, respectively. Lambs were also vaccinated against pneumonia, sheep pox, blackleg and anthrax diseases.

Feed Ingredients and Experimental Diets: The feed ingredients used for feeding the experimental lambs were native pasture grass hay, wheat bran; lentil broken screening locally called "Ymiser kik bitari (Elet)" and salt, which were among commonly available feed ingredients, where the experimental animals are predominantly found. Lentil broken screening is a mixture of high amount of broken lentil and very few lentil bran and lentil spur. Experimental diets were formulated by reviewing of different literatures about the energy and protein requirements of dietary energy and protein for growing lambs.

The combination of these dietary energy and protein source concentrates were determined based on nutrient recommendation guides for other breeds. Wheat bran and lentil broken screening combination was set (Table 1) the total offered feed to be contained around 8 to 9 MJ ME per kg DM and 10% to 12% CP considering the energy and protein the animals can also get from grass hay ad libitum feeding.

Experimental Design and Layout: Randomized complete block design (RCBD) was used to undertake the experimental study. Four dietary treatments from different wheat bran and lentil screening combinations were arranged as:

- T₁ = Diet containing 30 g wheat bran and 133 g lentil broken screening combinations
- T₂ = Diet containing 235 g lentil broken screening combinations
- T_3 = Diet containing 285 g wheat bran
- T₄ = Diet containing 227 g wheat bran and 120 lentil broken screening

The experimental lambs were grouped into six blocks of four lambs based on their initial body weight, which was determined two weighing average after overnight fasting at the end of the adaptation period of 15 days. Four treatment diets were randomly assigned to each lamb in the block, making six lambs per treatment.

Feeding of Experimental Lambs: Lambs were fed individually during the experimental period by offering grass hay basal diet ad libitum ensuring a refusal of 20%, based on previous day's intake. Concentrate supplements were offered twice a day in two equal portions at 0800 and 1600 hours. There was an adaptation period of 15 days to the experimental feeds before the commencement of data collection. Water was given ad libitum. Feed offered and refused was measured daily using 5 kg sensitive balance with one gram precision and the difference between the daily total feed offered and the daily refused was considered as daily feed intake on DM basis.

Body Weight Change and Feed Conversion Efficiency:

On the first day of the commencement of the feeding trial, at the end of 15 days of adaptation period to treatment feeds the average of two weighing was taken as initial body weight of lambs. The daily feed and subsequent body weight measurements were taken at a ten-day interval after overnight fasting using a 100 kg Salter fixed balance with a sensitivity of 0.5 kg. The average daily body weight change was calculated as the difference between the initial and final live weight of the lambs divided by the number of experimental days.

Table 1: Concentrate feed ingredients used to formulate treatment diets

	Experimental fee	Experimental feed ingredients (g) Nutrients				
Treatment	Wheat bran	Lentil broken screening	Salt	Total (g)	ME (MJ/kg DM)	CP (%)
T_1	30	133	5	168	10.5	25.73
T_2	0	235	5	240	10.4	27.73
T_3	285	0	5	290	11.7	18.23
T_4	227	120	5	352	11.3	21.62

Feed conversion efficiency (FCE) of the lambs was determined as the proportion of daily body weight gain to the daily total DM intake [11]

Carcass Evaluation: Five experimental lambs from each treatment were weighed and slaughtered after overnight fasting. The hot carcass weight was measured after about one hour from slaughter. Then, the cold carcass weight was measured after overnight chilling. The weights of different non-carcass components were measured immediately after slaughter. The blood and full reticulo-rumen were weighed using plastic buckets. The un-dissected and dissected carcass was measured for carcass yield and quality parameters.

The pH and color values of carcass were measured as described by another author [12]. The pH value was measured twice (At 1 and 24 hour, after slaughter), using a pH meter equipped with a penetrating electrode (Hanna Instruments, HI–9025), which was manually inserted into the longissimus dorsi muscle. Then, at insertion the muscle pH was read from the equipment. In addition to calibration, ionized water was used to rinse the pH meter before and after inserting in to the muscle of another lamb. Color was measured from longissimus dorsi muscle using a Minolta CM-2002 colorimeter, defining color as a set of three variables: L* for brightness, a* for redness and b* for yellowness [12].

Following the same author's procedure, the carcass was split along the dorsal middle line with a band saw after removing the tail. Thus, components of the carcass were estimated as:

Total lean = constant x weight of lean from left half carcass,

Total fat = constant x weight of fat from left half carcass and

Total bone = constant x weight of bone from left carcass,

where, constant is determined as proportion of cold whole carcass to cold left half carcass.

Samples from lean meat and from visible fat were collected from the left half carcass and were retained for laboratory chemical analysis of Ether Extract and Crude Protein.

Laboratory Analysis: The partially dried representatives of feed samples were milled using laboratory mill to pass through 1 mm sieve screen and analyzed for DM and ash [13]. The two-stage method Tilley and Terry [14] was followed to determine IVOMD and then metabolizable energy (ME) content was estimated using the equation: ME (MJ/kg DM) = 0.16*IVOMD [15]. Nitrogen (N) was analyzed according to Kjeldhal procedure and CP was determined as N * 6.25. Samples of meat and fat were dried at 60°C for 48 h in a forced draft oven and ground to pass through a 1 mm sieve screen and analyzed for DM, CP and EE [13].

Data Analysis: The data was analyzed using SAS software [16]. Mean comparison was done using Duncan's multiple range test and significant differences between the treatment groups were considered at $P \leq 0.05$.)

The model fitted to calculate the different response variables were:

$$Y_{ii} = \mu + a_i + e_i$$

where:

 Y_i = Response variables

 μ = Over all mean

a_i = ith Effect of wheat bran and lentil broken screening combinations

 e_i = Effect of the i^{th} random error

RESULT

Dry Matter Intake and Body Weight Change: The effects of different combinations of wheat bran and lentil broken screening on the average daily dry matter and body weight of ram lambs is presented in Table 2. Wheat bran and lentil broken screening combinations affected ($P \le 0.05$) the total dry matter intake (TDMI). Lambs assigned for 227g wheat bran and 120g lentil screening combination (T4) showed highest TDMI than T_1 , T_2 and T_3 diet groups.

Table 2: Dry matter intake and body weight change of lambs as affected by wheat bran and lentil broken screening combinations (g)

Treatment	Measured variables							
	TDMI	IBW (kg)	FW (kg)	TWG (kg)	DWG (g)	FCE		
T1	716.06a	18.08	21.42a	3.33ª	37.04ª	0.06ª		
T2	760.17 ^a	17.79	22.58abc	4.79 ^b	53.24 ^b	$0.07^{\rm b}$		
T3	775.11 ^a	18.08	23.25 ^b	5.17 ^b	57.41 ^b	$0.07^{\rm b}$		
T4	814.47 ^b	17.92	24.13°	6.21°	68.98°	0.08^{b}		
Sig.	*	NS	**	***	***	**		

Note: DMI = dry matter intake; IBW = Initial body weight; FW = Final body weight; TWG = Total body weight gain; DWG = Daily body weight gain; FCE = feed conversion efficiency (BWG / DMI); *** = $P \le 0.01$; *** = $P \le 0.001$; NS = non-significant; Sig. = Significance

Table 3: The carcass yield parameters as affected by wheat bran and lentil screening combinations

	Measured variables								
			Carcass w	t. (kg)	Dressing %		Carcass pr	oportion (%)	
Treatments	SW (kg)	EBW (kg)	Hot	Cold	SW basis	EBW basis	Lean	Fat	Bone
T1	19.20a	15.48a	7.88ª	7.34ª	41.20	50.17	57.69	10.78	27.83
T2	21.40 ^b	18.00^{b}	9.32 ^b	8.77 ^b	43.48	51.76	60.08	11.84	25.12
T3	22.20 ^b	18.76 ^b	9.40 ^b	8.89bc	42.42	50.17	56.93	11.04	24.93
T4	22.60^{b}	19.56°	10.06 ^b	9.65°	44.61	51.64	58.62	12.28	26.31
Sig.	***	***	**	***	NS	NS	NS	NS	NS

Note: SW = Slaughter weight; EBW = Empty body weight; **= P ≤ 0.01; *** = P ≤ 0.001; NS = non-significant; Sig. = significance

The initial body weight of the experimental animals was similar (P \geq 0.05) between the dietary treatment groups. Final body weight (FW) of the animals was higher (P \leq 0.01) for those animals fed 227g wheat bran and 120 g lentil screening concentrate (T₄). Total body weight gain (BWG) and daily body weight gain (DBWG) of those animals allocated to T₄ were higher (P \leq 0.001) than recorded for lambs were in T₁ followed by T₂ and T₃ diet group.

The wheat bran and lentil screening concentrate combination effect was significant ($P \le 0.01$) on FCE in terms of kg body gain per kg dry matter intake. The experimental sheep showed superior feed conversion efficiency (0.08) on the diet containing 227 g wheat bran and 120 g (T_4) lentil screening concentrate than those offered a diet containing 30 g wheat bran and 133 g lentil screening (T_1).

Carcass Evaluation: The effect of wheat bran and lentil screening combinations on carcass yield is presented in Table 3. The slaughter and empty body weight and cold carcass weight of finishing ram lambs varied ($P \le 0.001$) between wheat bran and lentil screening combinations. The hot carcass weight was also affected ($P \le 0.01$) by wheat bran and lentil screening combinations. The dressing percentage and carcass lean, fat and bone proportion of lambs were similar ($P \ge 0.05$) between the treatment diets groups.

The higher slaughter and empty body weight was recorded for lambs assigned to T_4 diet categories than were in T_1 , T_2 and T_3 ones. The carcass yield of lambs was increased at concentrate supplement of 227g wheat bran and 120g lentil screening mixture (T_4) than at T1 diet. Lambs assigned to T_4 diet numerically had higher dressing percentage in terms of slaughter weight than the lambs fed T_1 , T_2 and T_3 diets. A bit higher fat percentage also was recorded for lambs assigned to a T_4 than T_1 followed by T_2 then T_3 group. The carcass lean proportion from lambs was better at T_2 than T_4 then followed by T_1 and T_3 categories.

Non-Carcass Components: The effect of wheat bran and lentil screening combinations on non-carcass body components are presented in Table 4. Wheat bran and lentil screening combinations effect was significant ($P \le 0.01$) on kidney fat and ureo-genital tract (UGT) of the experimental lambs. Respiratory tract and blood weights were different ($P \le 0.05$) between the treatment diet groups.

Carcass Quality Parameters: Carcass quality parameters as affected by wheat bran and lentil screening combinations are shown in Table 5. Wheat bran and lentil screening combinations effect was non-significant ($P \ge 0.05$) on all carcass quality parameters except on DM content of carcass fat. The DM% of carcass fat was

Table 4: Non- carcass body components as affected by wheat bran and lentil screening combinations

	Treatments					
Measured variables	T ₁	T ₂	T ₃	T4	Sig.	
Full gut (kg)	5.32	5.12	5.16	4.80	NS	
Empty gut (kg)	1.60	1.72	1.76	1.80	NS	
Kidney (g)	57.62	60.76	59.26	62.94	NS	
Kidney fat (g)	29.68a	48.30bc	37.92ab	51.62°	**	
Spleen (g)	43.74	44.46	49.26	49.64	NS	
RT (g)	0.28 a	0.35 ^b	0.31ab	0.37 b	*	
Heart (g)	0.12	0.13	0.12	0.13	NS	
Liver a (g)	0.33	0.38	0.35	0.39	NS	
Blood, (kg)	0.78^{a}	0.85a	0.84 ^b	0.96°	*	
Skin, (kg)	1.95 ^a	2.33ab	2.23ab	$2.70^{\rm b}$	NS	
Head, (kg)	1.64	1.91	1.82	1.83	NS	
Testicles, (g)	0.19	0.21	0.19	0.24	NS	
UGT, (g)	62.82a	94.14 ^b	74.78ab	125°	**	

Note: UGT = ureo-genital tract; a = Liver with gallbladder, RT= lung with trachea;* = P ≤ 0.05; ** = P ≤ 0.01; NS = non-significant; Sig. = significance

Table 5: Carcass quality as affected by wheat bran and broken lentil screening combinations

		Treatments				
Measured variables		T ₁	T_2	T ₃	T ₄	Sig.
DM%	Lean	29.08	28.70	30.80	32.96	NS
	Fat	50.86ª	53.30 ^b	55.12°	55.66°	***
Lean meat CP %		61.58	60.50	60.58	58.00	NS
EE %	Lean	6.39	7.14	8.49	8.84	NS
	fat	90.26	80.49	83.44	90.55	NS
Carcass pH	Hot	6.61	6.86	6.91	6.68	NS
	Cold	5.68	5.71	5.94	5.80	NS
Hot carcass color	L*	33.53	33.74	32.93	31.50	NS
	a*	7.83	7.17	6.99	6.85	NS
	b*	7.42	7.26	6.63	6.56	NS
Cold carcass color	L*	34.53	34.21	32.94	34.60	NS
	a*	11.33	12.04	9.96	10.26	NS
	b*	8.11	9.97	8.59	7.08	NS

Note: DM = dry matter; CP = crude protein; EE = Ether extract; L*= bright, a*= red and b*= yellow; abc = the same column with different superscripts differ significantly; *** = $P \le 0.001$; NS = non significant; Sig. = Significance level

higher (P \leq 0.001) for lambs from the diet contained 227 g wheat bran and 120 g lentil screening (T₄) than T₁ and T₂ diet. Animals assigned to T₂ diet had numerically greater value (8.59) of cold carcass b* value than 8.59, 8.11 and 7.08 recorded from T₃, T₁ and T₄ diet groups. The CP% in carcass lean of lambs was numerically higher for T1 > T3 > T2 diet. The values of cold carcass brightness (L*) was a bit higher from lambs assigned for T₄ diet.

DISCUSSION

Dry Matter Intake and Body Weight Change: The present study showed that dry matter intake and body weight change were statistically affected by energy and protein source concentrate combinations. In T_4 and T_3 diet groups, which were the higher energy contained

concentrate ones, the dry matter intake of lambs was higher than T_1 and T_2 groups. In agreement with the present findings [17] reported that dietary energy levels influenced the dry matter intake of lambs and Similarly [18] reported that finishing Awassi lambs on high energy diet improves DMI better than on low energy diet.

The total DMI (814.47 g) observed from T_4 diet was in agreement with 802 ± 9.35 g reported previously [19] from one year old Menz lambs fed on hay ad libtum and 400 g concentrate supplement. Formerly, Anindo *et al.* [20] reported 568 ± 11 g daily DM intake from 5-7 monthold Menz ram lambs on grazing and supplemented with 80 g molasses-urea-block, which was less than the DMI recorded in the present study. It could be due to the experimental animals' age and feed composition differences.

The present study confirmed that FW, TWG and DWG of lambs assigned to 227 g wheat bran and 120 g lentil screening mixture (T4) were higher than those fed on T₁, T₂ and T₃ diet. In agreement with the present study, the daily body weight gain was improved [21, 22] at a higher dietary energy than at a lower energy level. The final body weight of the lambs fed a diet containing 2.90 Mcal/kg DM was higher than lambs fed a diet with 2.40 Mcal/kg DM [23] which was in similar trend with the present finding. The FCE was higher in a diet containing a higher ME and CP level [24]. Similarly, increased dietary energy level improved FCE [22]. Dietary energy density also has effect on performance of lambs and it is the major dietary element responsible for the variation in the utilization of nutrients [25].

In the previous study [26] reported that Menz ram lambs attained 19.12 ± 0.47 kg body weights at their 12 month of age with DWG of 50.62 ± 2.20 g. The 5-7 months old Menz ram lambs resulted in 4 kg extra body weight after 6 months of grazing and supplemented with 80 g molasses-urea-block [27]. Indoor feeding g with 227g wheat bran and 120g lentil screening mixed diet supplementation could be for better final body weight during the 3 months feeding period seemed to be acceptable to obtain best body weight of fattening Menz ram lambs. Almost in all treatment groups, the body weight change trend was increasing with slower rate at the beginning of experimental weeks then increased at a higher rate followed by slower rate towards the last week indicated that the three months lambs fattening time with the same age and initial body weight group and diet could be enough.

Carcass Evaluation: The concentrated diet supplement combination affected the slaughter body, empty body, hot and cold carcass weights and these parameters were higher at T₄ than were at T₁, T₂ and T₃ diets. The dressing percentage and carcass proportion were not affected by energy and protein source concentrate feed combinations. Similarly, insignificant effect of dietary protein level on lamb carcass parameters [28] also observed before.

In the present study, the dressing percentage recorded from all treatment groups disagreed with Kassahun [26] who reported 49.1% dressing percentage, 10.78-12.36% fat, 24.93-26.48% carcass bone and 19.5% fat proportion from the same breed slaughtered at about 17 months of age and attained 32 kg live body weight. Another scholar [29] also found higher pre-slaughter weight (25 kg), empty body weight (20.4 kg) and carcass weight (10 kg), lower fat (9%) and bone (23%) proportion

from 17-month-old Menz ram lambs. The difference on carcass measurements observed between the previous and the current study could be due to age and nutrition composition differences. In line with this, various studies [30-32] stated that plane of nutrition as a factor of environment has a vital role to determine carcass characteristics of lambs.

The proportion of carcass lean was better from lambs supplemented 235g lentil screening (T2) than the rest of treatment groups. The proportion of carcass lean was also higher than the previous reports [26, 29]. Accordingly, a supplement diet containing 227g wheat bran and 120 g lentil screening may be used for feeding lambs for better carcass fat cover. A slower growth rate at a lower energy diet produced a slightly higher leaner carcass and a lower dressing percentage. In relation to this, improve carcass leanness, reducing the energy content of diets fed to feedlot lambs is not an economically sound production strategy [33].

Non-Carcass Components: The effect of wheat bran and lentil screening combination was insignificant on all non-carcass body component weights except for kidney fat, blood, respiratory and ureo-genital tract weights. Higher kidney fat, blood, respiratory and ureo-genital tract weights recorded from lambs assigned to T₄ diet. In agreement with the present study, more kidney-pelvic fat percentage in the high-energy diet was reported [28]. The weights of heart, head, kidney and testicles recorded from all treatments were similar with previous studies report, which was the Afar sheep has 118-123 g (Heart), 1662-1760 g (Head), 185-212 g (Kidney) and 240- 254 g (Testicles) weight [34]. The higher blood, kidney fat and liver weights were reported in the present study as compared with reported for Washera sheep fed grass hav supplemented with Millettia ferruginea leaf hav [35].

Carcass Quality Parameters: The higher lean and fat DM% value at T₄ diet group indicated that lambs fed a diet containing 227 g wheat bran and 120 g lentil screening resulted in a carcass yield with higher DM content as compared to that of T₁, T₂ and T₃ diet. Numerically, the protein content of lean carcass was higher from lambs supplemented 285 g wheat bran (T3) than the rest treatment groups. According to FAO report [36] the content of fat and CP in lamb's lean meat was 9.5% and 28.5%, respectively was disagreed with the present study for all diet groups. It could be due to differences in breed, feed and age of lambs.

The higher EE of lean carcass in the present study from lambs assigned in T₄ indicated that 227 g wheat bran and 120 g lentil screening mixture diet was better to get high carcass fat cover than for other combination diet. A higher ether extract value (22.4%) was reported by another author [26] from lean carcass of Menz lambs, compared to the EE recorded from the present study. The EE values variation between the present and the previous ones might be a higher proportion of intra muscular fat from older lambs than young ones. The nutrient concentration could also be the reason for EE value differences between the previous and present studies. Energy to protein ratio influences muscle deposition and meat quality [37]. According to the former studies reports [26, 38, 39], breed, management, environmental conditions and nutritional level can affect carcass yield and quality, fat tissue development and composition.

Thought, the effect of concentrate combinations was non-significant on color and pH values, the higher hot carcass yellowness (b*) numerical value for T_1 diet was in agreement with the previous report [40] yellowish muscles developed in animals assigned to lower ME diets than were at higher one. The pH levels of 5.8 or less after 24 hour of slaughter are recommended to avoid meat quality deteriorated [41]. The pH around 5.5 is also desirable [42]. Thus, the pH values recorded for cold carcass in the present study from all diet groups were within the recommended ranges.

CONCLUSION

The study was conducted to evaluate dry matter intake, growth performances and carcass characteristics of fattening Menz ram lambs fed grass hay basal diet and different mixtures of wheat bran and lentil broken screening supplement. The concentrate feed combinations effect was significant on dry matter intake, body weight gain and carcass yield. It could be conclude that as one of the feed package option, 227g wheat bran and 120g lentil screening mixture supplement on grass hay basal diet can be considered as the best for fattening of Menz ram lambs with better dry matter intake, body gain and carcass yield with acceptable carcass fat cover.

REFERENCES

 Alemu, Y., 2008. Nutrition and Feeding of Sheep and Goats. Sheep and Goat Production System in Ethiopia, Chapter Seven. In: Sheep and Goat

- Production Handbook for Ethiopia, Ethiopian Sheep and Goat Production Improvement Progeram (ESGPIP), pp: 104-156.
- McDonald, P., A.R. Endwards, D.F. Greenbalgh and A.C. Morgan, 2002. Animal Nutrition 6th Ed. Prentice Hall, London, pp: 583-59.
- Olfaz, M., N. Ocak, G. Erener, M.A. Cam and A.V. Garipoglu, 2005. Growth, Carcass and Meat Characteristics of Karayaka Growing Rams Fed Sugar Beet Pulp, Partially Substituting for Grass Hay as Forage. Meat Science, 70: 7-14.
- Skunmun, P., P.K. Boonyanuwat, R.S. Koonavoot and T. Suwanasopee, 2012. Improving Smallholder and Industrial Livestock Production for Enhancing Food Security, Environmental and human welfare, proceedings of the 15th AAAP Animal Science Congress held at Thammasat University, Pathum Thani, 26-30, November 2012, AVAT, 267.
- Salo, S., M. Urge and G. Animut, 2016. Effects of Supplementation with Different Forms of Barley on Feed Intake, Digestibility, Live Weight Change and Carcass Characteristics of Hararghe Highland Sheep Fed Natural Pasture. J. Food Process Technol., 7: 568.
- Tsega, W., B. Tamir, G. Abebe and K. Zaralis, 2014. Characteristics of urban and peri-urban sheep production systems and economic contribution in Highlands of Ethiopia. Iranian J. Appl. Anim. Sci., 4(2): 341-349.
- 7. Ann, W., E.G. Lance and E. Richard, 2000. Sustainable Sheep Production. Livestock Production Guide. "Sheep" at listproc@listproc.wsu.edu.
- Mullu, M., T. Berhan and Y. Alemu, 2008. The Effects of Supplementation of Grass Hay with Different Levels of Brewer's Dried Grain on Feed Intake Digestibility and Body Weight Gain in Intact Wogera Lambs. East African Journal of Sciences, 2: 105-110.
- Abebaw, N., 2007. Effects of Rice Bran and / or Noug Seed (Guizotia Abyssinica) Cake Supplementation on Feed Utilization and Live Weight Change of Farta Sheep Fed Native Grass Hay. MSc. Thesis submitted to Haramaya University, Haramaya, Ethiopia, pp. 94.
- Debre Zeit Agricultural Research Center (DZARC), 2003. Annual Research Report 2002/03, DZARC, Ethiopian Institute of Agricultural Research, Debre-Zeit, Ethiopia.
- 11. Malik, R.C., M.A. Razzaque, S. Abbas, N. Al-Khozam and S. Sahni, 1996. Feedlot growth and efficiency of three-way cross lambs as affected by genotype, age and diet proc. Australian Society of Animal Production, pp: 21.

- Mitchell, D.A., 2007. Impact of Research with Cattle, Pigs and Sheep on Nutritional Concepts: Body Composition and Growth, American Society for Nutrition Journal of Nutrition, 137: 711-714.
- Association of Official Analytical Chemists (AOA C), 1990. Official method of analysis, 15th ed. (Helrich, K., ed.), Pub. A OA C, Washington, DC.
- 14. Tilley, J.M.A. and R.A. Terry, 1963. A two -stage technique for in vitro digestion of forage crops. Journal of British Grassland Society, 18: 104-106.
- 15. McDonald, P., A.R. Endwards, D.F. Greenbalgh and A.C. Morgan, 2002. Animal Nutrition, 6th Ed. Prentice Hall, London, pp: 583-59.
- Statistical Analysis System (SAS), 2002. SAS (r)
 Proprietary Software Version 9.00 (TS MO),
 Copyright(c)2002 by SAS Institute Inc., Cary, NC,
 USA.
- 17. Sultan, J., A. Javaid and M. Aslam, 2010. Nutrient digestibility and feedlot performance of lambs fed diets varying protein and energy contents. Tropical Animal Health and Production, 42: 941-6.
- Haddad, S.G. and M.Q. Husein, 2004. Effect of dietary energy density on growth performance and slaughtering characteristics of fattening Awassi lambs. Livestock Production Science, 87: 171-177.
- Kassahun, A., 2000. Comparative performance evaluation of Horro and Menz sheep of Ethiopia under grazing and intensive feeding conditions, PhD Thesis submitted to Humboldt University, Germany, pp: 119.
- Anindo, D., F. Toé, S. Tembely, E. Mukasa-Mugerwa,
 A. Lahlou-Kassi and S. Sovani, 1998. Effect of molasses-urea-block (MUB) on dry matter intake, growth, reproductive performance and control of gastrointestinal nematode infection of grazing Menz ram lambs. Small Ruminant Research, 27: 63-71.
- 21. Moharrery, A., M. Khorvash and H. Khadivi, 2012. Effect of dietary energy level and docking on carcass characteristics of fat tailed Kurdi sheep. Iranian Journal of Livestock, 1: 19-27.
- 22. Yagoub, Y.M. and S.A. Babiker, 2008. Effect of dietary energy level on growth and carcass characteristics of female goats in Sudan. Volume 20, Article #202.Retrieved on 6 November 2014, from http://www.lrrd.org/lrrd20/12/yago20202.htm.
- Wandrick, H., C. Felipe, Queiroga, G.C. Roberto, F.C. Marcílio, G.C. Maria, P.F. Morais and M.S. Neube, 2012. Biological and economic performance of feedlot lambs feeding on diets with different energy densities, R. Bras. Zootec, 41(5) Viçosa..

- 24. Ebrahimi, R., H.R. Ahmadi, M.J. Zamiri and E. Rowghani, 2007. Effect of Energy and Protein Levels on Feedlot Performance and Carcass Characteristics of Mehraban Ram Lambs. Pakistan Journal of Biological Sciences, 10: 1679-1684.
- 25. Hosseini, S.M., 2008. Effect of different energy levels of diet on feed efficiency, growth rate and carcass characteristics of fattening lambs. Journal of Animal and Veterinary Advances, 7: 1551-1554.
- Kassahun, A., 2000. Comparative performance evaluation of Horro and Menz sheep of Ethiopia under grazing and intensive feeding conditions, PhD Thesis submitted to Humboldt University, Germany, pp: 119.
- 27. Anindo, D., F. Toé, S. Tembely, E. Mukasa-Mugerwa, A. Lahlou-Kassi and S. Sovani, 1998. Effect of molasses-urea-block (MUB) on dry matter intake, growth, reproductive performance and control of gastrointestinal nematode infection of grazing Menz ram lambs. Small Ruminant Research, 27: 63-71.
- 28. Ríos-Rincón, F.G., A. Estrada-Angulo, A. Plascencia, M.A. López-Soto, B.I. Castro-Pérez, J.J. Portillo-Loera, J.C. Robles-Estrada, J.F. Calderón-Cortes and H. Dávila-Ramos, 2014. Influence of Protein and Energy Level in Finishing Diets for Feedlot Hair Lambs: Growth Performance, Dietary Energetic and Carcass Characteristics. Asian-Australasian Journal of Animal Sciences, 27: 55-61.
- 29. Ewnetu, E., Y. Alemu and J.E.O. Rege, 2006. Slaughter characteristics of Menz and Horro sheep. Small Ruminant Research, 64: 10-15.
- 30. Santos-Silva, J., R.J. Bessa and I.A. Mendes, 2002. The effect of supplementation with expanded sunflower seed on carcass and meat quality of lambs raised on pasture. Meat Science, 65: 1301-1308.
- 31. Ruzic-Muslic, M.P., M.M. Petrovic, Z. Bijelic, V. Pantelic and P. Perišic, 2011. Effects of different protein sources of diet on yield and quality of lamb meat. African J. Biotechnology, 10: 15823-15829.
- 32. Muhammad, I., P. John, A. Pervez, A. Safdar, L. Muhammad and S. Javed, 2008. The Effect of Concentrate- and Silage-Based Finishing Diets on the Growth Performance and Carcass Characteristics of Suffolk Cross and Scottish Blackface Lambs. Journal of Veterinary Animal Science, 32: 191-197.
- 33. Beauchemin, K.A., L.A. McClelland, S.D. Jones and G.C. Kozub, 1995. Effects of crude protein content, protein degradability and energy concentdictof the diet on growth and carcass characteristics of market lambs fed high concentrate diet. Cannadian Journal of Animal Science, 75: 387-395.

- 34. Abadi, N., Y. Mehammed and A. Getachew, 2014. Substitution Effect of Faba Bean (*Vicia faba* L.) Hull to Wheat Bran on Body Weight Change and Carcass Characteristics of Afar Sheep Fed Hay as Basal Diet. Agricultural Science, Engineering and Technology Research, 2: 01-11 (Online) Available online at http://asetr.org/`.
- 35. Alemu, B., G. Animut and A. Tolera, 2014. Effect of Millettia ferruginea (Birbra) foliage supplementation on feed intake, digestibility, body weight change and carcass characterstics of Washera sheep fed grass hay basal diet. Springerplus, 3: 50.
- 36. Food and Agriculture Organization (FAO), 2007. Meat Processing Technology for Small to Medium Scale Producers, FAO, United Nations, Regional Office for Asia and the Pacific, Bangkok.
- 37. Skunmun, P., P.K. Boonyanuwat, R.S. Koonavoot and T. Suwanasopee, 2012. Improving Smallholder and Industrial Livestock Production for Enhancing Food Security, Environmental and human welfare, proceedings of the 15th AAAP Animal Science Congress held at Thammasat University, Pathum Thani, 26-30, November 2012, AVAT., pp. 267.

- 38. Iason, G.R. and A.R. Mantecon, 1993. The effects of dietary protein level during food restriction on carcass and non-carcass components, digestibility and subsequent compensatory growth in lambs. Animal Production, 56: 93-100.
- 39. Cantón, J.G., M.A. Velázquez and R.A. Castellanos, 1992. Body composition of pure and crossbred Black belly sheep. Small Ruminant Research, 7: 61-66.
- Maiorano, G., R.J. Field Mccormick, M.L. Riley, W.C. Russell, F.L. Williams and J.D. Crouse, 1990. Effect of Plane of Nutrition and Age on Carcass Maturity of Sheep. Journal of Animal Science, 68: 1616-1623.
- 41. Tejeda, J., R. Pera and A. Andres, 2008. Effect of live weight and sex on physico-chemical and sensorial characteristics of Merino lamb meat, Meat Science, 80: 1061-1067.
- 42. Croker, K. and P. Watt, 2001. Feeding sheep for meat production in the Agricultural areas of western Austeralia. The good food guide for sheep. Department of Agriculture, pp: 105.