Physical and Chemical Characteristics of ‘Thompson Navel’ Orange Fruits Grown on Four Rootstocks in North of Iran

1Mehdi Sharifani, 2Vahid Akbarpour, 1Saeid Samadi Zarrini and 1Abbas Sabourooh Monfared

1Department of Horticulture, Gorgan University of Agricultural Sciences and Natural Resources, Golestan, Iran
2Department of Horticulture, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Iran
3Agricultural and Horticultural Institute of Fajr-e-Sari, Research and Development Unit of Citrus, Mazandaran, Iran.

Abstract: This research has been conducted to evaluate the effects of four citrus rootstocks on physical and chemical characteristics of ‘Thompson Navel’ orange fruits. The rootstocks included Citrange, Citrumelo, Poncirus and Sour orange. Fruit samples were collected from uniform 15-years old trees and transferred to the laboratory. The data were extracted from measurements of chemical and physical variables of the ‘Thompson Navel’ orange fruits. The physical and chemical variables were fruit weight, fruit volume, fruit density, fruit length and diameter, rind thickness and pulp weight. The chemical variables consisted of pH, electrical conductivity (EC), total soluble solids (TSS), titrable acidity (TA), reducing sugars and vitamin C. Data were analyzed statistically (ANOVA) using analysis of variance in a completely randomized design. In this study, it was quite obvious that the physical and chemical properties of ‘Thompson Navel’ orange fruits can be affected by the rootstock. Sour orange can be considered as suitable rootstock for ‘Thompson Navel’ orange for most of fruit qualitative attributes under the north of Iran condition. Although Citrumelo, Citrange and Poncirus had good effects on fruit quality to some extent, Citrumelo appeared to be the most promising rootstocks in replacing the tristeza-susceptible Sour orange for ‘Thompson Navel’ orange in this area. Further results are discussed on the paper.

Key words: Thompson Navel · Orange · Citrus · Rootstock · Fruit quality

INTRODUCTION

Citrus rank the first in the world with respect to production among fruits. They are grown commercially in more than 50 countries around the world [1]. Sweet orange (Citrus sinensis) belongs to the Rutaceae family [2]. ‘Navel’ orange fruit is important group of fresh sweet orange cultivars due to its excellent quality [1]. ‘Thompson navel’ orange is the most widely grown Navel cultivar in Mazandaran province of Iran, where it is one of the important citrus producers area [3].

Several factors such as rootstock, nutrition and irrigation regimes, cultivation design and etc. may affect the promotion of quality and quantity of fruits [4]. The rootstock may influence several aspects of citrus growth and development, including yield, fruit quality and tolerance to stress caused by biotic and abiotic factors [5-7]. Also element absorption system and root and top growth model can be affected by rootstock [9-11].

All citrus cultivars in Iran are mainly budded on Sour orange rootstock which is known for its resistance to gummosis and high tolerance to the climate condition of this area [3]. However, owing to this fact that Sour orange is susceptible to viral disease such as ‘Tristeza’, several rootstocks have been introduced and tested for their adaptability to avoid the risk of future incidence in citrus orchards [12].

The alternative rootstocks for Sour orange are Poncirus, Citrange and Citrumelo in Iran [3]. Rootstocks have had an important role in the development of the citrus industry in the world. The effect of rootstocks on citrus fruit production and fruit quality has been intensively studied in many citrus producing areas [13, 14].

Corresponding Author: Vahid Akbarpour, Department of Horticulture, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Iran, E-mail: v. akbarpour60@yahoo.com.
The objective of this study was to evaluate physical and chemical characteristics such as fruit size, rind thickness, juice content, total soluble solids (TSS), titratable acids, vitamin C, reducing sugars of ‘Thompson Navel’ sweet orange grafted on Sour Orange, Ponceirus, Citrange and Citrumelo rootstocks in the Research and Development Orchard of Fajr-e-Sari Institute of Iran.

**MATERIALS AND METHODS**

**Plant Material:** This study was conducted in Research and Development Orchard of Fajr-e-Sari Institute in Mazandaran province of Iran.

Sweet orange trees e.v. ‘Thompson Navel’ (*Citrus sinensis*) grafted on four rootstocks: Sour orange, Ponceirus, Citrange and Citrumelo. Fruit samples harvested from uniform 15-years old trees with four replications in November, 2008. Each replication contained ten fruits from main geographical orientations of the tree top. These trees were planted with the space of 7×4 m and had been received similar cultural practices such as irrigation, fertilization, pest and weed management.

**Physical Properties:** The rind and pulp were separated manually after fruit fresh weight and volume measurement also fruit length, diameter and density determination.

Fruit fresh weight was determined by weighting the fruits in the air on a precision digital balance (Mettler AI50) with an accuracy of 0.0001 g. Fruit volume was determined by water displacement method and the weight density of the fruit was obtained by calculated the ratio of weight to volume. Then rind thickness was measured by a digital caliper with 0.01 mm accuracy and oven-dried to constant weight to calculate its moisture content. Then the fruit juice was extracted from the samples and analyzed for major chemical compositions.

**Chemical Analysis:** For pH and electrical conductivity (EC, ds.m⁻¹) determinations, the samples were homogenized and measured with a pH meter (Labtron, Iran) and conductivity meter (ABB-100), respectively. Total soluble solids (TSS) (*°Brix*) in the fruit juice were determined with a digital refractometer (ATAGO RX-5000) at 20°C, calibrated using distilled water. Titrable acidity (TA) was estimated by juice titration with 0.1 N NaOH to the titration end point of pH 8.3, monitored with a pH meter (Labtron) and expressed as citric acid content (mg.100ml⁻¹). Reducing sugars were determined according to the method of Lane and Eyon as described by Ranganna [15] and expressed as mg sugar per ml.

Vitamin C was determined by employing the Jacob and Sotoudeh’s method [16] and expressed as mg per 100 ml.

**Statistical Analysis:** The experimental design was a completely randomized design. Data were analyzed statistically (ANOVA) using analysis of variance and differences among the means were determined for significance at P<0.05 using Duncan’s multiple range test.

**RESULTS AND DISCUSSION**

**Physical Properties:** Based on data shown in Tables 1 and 2, it is evident that rootstocks investigated in this research had significant effects on fruit physical properties.

Fruit weight ranged from 235.94 to 314.66 g and fruit volume from 27.85 to 43.39 cm³. It was observed that, on average, the highest and lowest weight of ‘Thompson Navel’ fruits attained on Citrumelo (314.66 g) and Sour Orange (235.94 g) rootstocks, respectively. The highest and lowest fruit volume resulted in fruits collected from Citrange (43.39 cm³) and Ponceirus (27.85 cm³).

‘Thompson Navel’ fruits from trees on Citrange and Citrumelo showed significant difference for fruit density with other two investigated rootstocks. Similarly, average fruit density ranged from 78.70 to 86.07 g.cm⁻³ for Sour orange and Citrumelo rootstocks, respectively.

Data showed that the highest fruit length and diameter were produced by ‘Thompson Navel’ trees budded on Citrange and Citrumelo rootstocks and the lowest were observed on Sour orange and Ponceirus rootstocks.

Regarding the fruit rind thickness, Sour orange (6.03 mm) and Citrange (6.02 mm) rootstocks showed significantly the highest rind thickness and followed by Citrumelo (5.22 mm) and Ponceirus (4.85 mm) rootstocks with no significant difference.

Pulp weight of the fruit was found to be the maximum for Citrange rootstock (225.17 g) and minimum for Sour orange rootstock (165.55 g).
Table 1: Analysis of variance of physical characteristics of the fruits

<table>
<thead>
<tr>
<th>Rootstock</th>
<th>df</th>
<th>Fruit Weight</th>
<th>Fruit Volume</th>
<th>Fruit Density</th>
<th>Fruit Length</th>
<th>Fruit Diameter</th>
<th>Rind Thickness</th>
<th>Pulp weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rootstock</td>
<td>3</td>
<td>48735**</td>
<td>1738**</td>
<td>478**</td>
<td>476**</td>
<td>478**</td>
<td>10.03**</td>
<td>150.05**</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>53.18</td>
<td>13.39</td>
<td>14.65</td>
<td>6.03</td>
<td>5.71</td>
<td>0.9</td>
<td>2.75</td>
</tr>
</tbody>
</table>

** means p<0.01

Table 2: Physical characteristics of the ‘Thompson Navel’ fruits on four rootstocks

<table>
<thead>
<tr>
<th>Rootstocks</th>
<th>Fruit Weight(g)</th>
<th>Fruit Volume(cm³)</th>
<th>Fruit Density(g/cm³)</th>
<th>Fruit Length(mm)</th>
<th>Fruit Diameter(mm)</th>
<th>Rind Thickness(mm)</th>
<th>Pulp Weight(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour Orange</td>
<td>235.94</td>
<td>30.93a</td>
<td>78.60b</td>
<td>78.30c</td>
<td>78.61b</td>
<td>6.03a</td>
<td>165.55d</td>
</tr>
<tr>
<td>Poncirus</td>
<td>253.39c</td>
<td>27.85c</td>
<td>79.36b</td>
<td>79.31c</td>
<td>79.30b</td>
<td>4.85c</td>
<td>189.65c</td>
</tr>
<tr>
<td>Citrange</td>
<td>312.68b</td>
<td>43.39a</td>
<td>85.93a</td>
<td>86.32a</td>
<td>85.91a</td>
<td>6.02a</td>
<td>225.17a</td>
</tr>
<tr>
<td>Citrumelo</td>
<td>314.69a</td>
<td>41.89a</td>
<td>86.07a</td>
<td>85.11b</td>
<td>86.07a</td>
<td>5.22b</td>
<td>234.87b</td>
</tr>
</tbody>
</table>

The means followed by similar letters in each column are not significantly different at 5% level

Table 3: Chemical characteristics of the ‘Thompson Navel’ fruits on four rootstocks

<table>
<thead>
<tr>
<th>Rootstock</th>
<th>pH</th>
<th>EC(dS.m⁻¹)</th>
<th>TSS(B)</th>
<th>Titrable acids(%)</th>
<th>Reducing sugars(g/100ml)</th>
<th>Vitamin C(mg/100ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sour Orange</td>
<td>3.70a</td>
<td>3.00b</td>
<td>11.19a</td>
<td>1.20b</td>
<td>4.55a</td>
<td>27.44a</td>
</tr>
<tr>
<td>Poncirus</td>
<td>3.58c</td>
<td>3.21a</td>
<td>11.15a</td>
<td>1.06b</td>
<td>4.39b</td>
<td>28.76a</td>
</tr>
<tr>
<td>Citrange</td>
<td>3.50b</td>
<td>3.24a</td>
<td>10.66b</td>
<td>0.93c</td>
<td>3.82c</td>
<td>27.06a</td>
</tr>
<tr>
<td>Citrumelo</td>
<td>3.81a</td>
<td>3.19a</td>
<td>9.95b</td>
<td>0.76c</td>
<td>3.83c</td>
<td>25.27b</td>
</tr>
</tbody>
</table>

The means followed by similar letters in each column are not significantly different at 5% level

The obtained data by Sakurke et al. [4], Yonemoto et al. [17], Al-Jaleel et al. [18] and Filho et al. [7] revealed that the main fruit physical aspects i.e. fruit weight, volume, length, diameter etc. were affected by rootstocks. Tutu et al. [19] reported that 'Washington Navel' orange trees budded on Carrizo citrange produced the highest fruit yield in comparison with other studied rootstocks. Regarding the rind thickness, Fallahi et al. [20] and Al-Jaleel [21] stated that fruit peel thickness was 'affected by rootstocks'. Also similar researches have been done and confirmed this reports in some previous studies.

All these results indicate the inconsistency in fruit properties differences as affected by rootstocks, which could be attributed to differences in climatic conditions and soil characteristics [22]. Differences among rootstocks could be attributed to the differential ability of the rootstocks to absorb water and nutrients and to the physical differences among the root systems [23]. These differences can further affect fruit quality, growth and health of the scion cultivar.

Chemical Properties: Influence of different rootstocks on some chemical ‘Thompson Navel’ fruit properties is shown in Tables 3.

The pH ranged from 3.38 to 3.81 and there was a significant difference between both Citrumelo and Sour orange with other rootstocks. Regarding the EC, no significant difference was observed between Poncirus, Citrange and Citrumelo, while a significant difference was observed between Sour orange and mentioned rootstocks.

Results revealed that juice TSS of 'Thompson Navel' fruits from trees on Sour orange (11.19%) and Poncirus (11.15%) yielded the highest TSS percentages with no significant difference to each other; meanwhile the lowest values recorded with Citrange (10.06%) and Citrumelo (9.95%).

Titrable acidity in the juice of fruit from trees on Sour orange (1.20%) was found to be the maximum, while minimum for juice of fruit from trees on Citrumelo (0.76%). Reducing sugars of fruit juice ranged from 3.82 g/100ml in fruits grafted on Citrange to 4.53 g/100ml in juice of Sour Orange g/100ml grafted one.

As the results showed, juice of fruit from trees on Citrumelo had the lowest significant vitamin C (25.27 mg/100ml) comparing with fruit juice of other studied rootstocks; while fruit juice of trees on Poncirus had the highest amount (28.76 mg/100ml) of vitamin C.

The flavor and palatability of citrus fruit is a function of relative levels of TSS, acids and the other chemical attributes of fruit [2].

Ramin and Alirezaneshads’ [24] results indicated that the yield and fruit quality of grapefruit were strongly influenced by the used rootstocks. Also they stated that the rootstock type affected the fruit juice amount and soluble solid content. Concerning TSS in our research, the fruits from trees budded on Sour orange had the highest TSS as compared with those on the other rootstocks.
Regarding the effect of rootstock on chemical attributes, Ali [25] on ‘Fremont’ tangerine stated that the lowest percentage of juice acidity was found on Carrizo citrange. Bassal, [26] reported that fruits of ‘Clementine’ mandarin on ‘Swingle’ Citrumelo and Cleopatra mandarin rootstocks had higher acidity than those on Sour orange.

Findings of Al-Obeed et al. [13] concerning the effect of various rootstocks on the ascorbic acid content of fruit juice of grapefruit and lime trees revealed that the consider parameter was not greatly affected. These findings are in concordance with our results which showed no significant difference between three of tested rootstocks.

CONCLUSION

Rootstocks can affect the success of any commercial citrus culture. Therefore, their use is considered essential in citrus culture because of their strong influence on future successful growth. In this study, it was quite obvious that the physical and chemical properties of ‘Thompson Navel’ orange fruits can be affected by the proper selection of rootstock. Sour orange can be considered as suitable rootstocks for ‘Thompson Navel’ orange for most of fruit qualitative attributes under the North of Iran conditions. Since Sour orange rootstock is susceptible to viral disease such as ‘Tristeza’. Several rootstocks need to be introduced and tested for their adaptability to avoid the risk of future incidence in citrus orchards.

Although Citrumelo, Citrange and Poncirus had good effects on fruit quality to some extent, Citrumelo appeared to be the most promising rootstock in replacing the tristeza-susceptible Sour orange for ‘Thompson Navel’ orange in North of Iran.

This fact should not be ignored that ultimate quantitative and qualitative attributes a citrus fruit achieves is the result of many complex factors including nutrition and irrigation programs, rainfall distribution, pruning, fruit load, the rootstock/scion combination and etc.

ACKNOWLEDGEMENT

The authors would like to gratefully acknowledge Citrus Institute of Fajr-e-Sari, Mazandaran particularly Engineer Fakhrodin Arab who arranged and provided plant materials for this research. Also special thanks are devoted to Engineer Amir Daraei for his help in technical assistant.

REFERENCES