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Abstract: In this paper, the formulation of simultaneous analysis of dynamic crack growth and contact of 
its faces in two-dimensional domain is introduced. Displacement and traction boundary integral equations 
and additional contact equations are used simultaneously in one region in the time domain. The proposed 
method has the capability of automatic modeling of crack propagation and contact of crack faces in mixed 
mode fractures by adding only new elements in front of crack tips. This automatic capability of
simultaneous analysis of dynamic discrete crack propagation and contact problem is not enhanced in any of 
available commercial softwares. In order to verify the proposed method and so as to show the versatile 
features and capabilities of the method, dynamic crack growth of edge cracks and contact of crack faces in 
a T shaped plate is analyzed.
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INTRUDUCTION

Numerical modeling of dynamic crack growth and 
contact of crack faces has been the subject of intensive 
research particularly in the last two decades and the 
results are well documented in the literature. Different 
methods have been applied by authors to model the 
dynamic discrete crack growth. Among these models, 
Finite Element Method (FEM) and Boundary Element 
Method (BEM) are more applicable. The dynamic
fracture mechanics studies cases which inertial effect 
must be taken into account. These conditions are
obtained in dynamic loading or in rapidly growing 
cracks for static loading.

Discrete crack model in finite element method is 
shown as separation between element faces. The crack 
growth along the interface is determined by using
fracture mechanics criterion. Crack propagation is
determined due to remeshing, creating, replacing or
releasing the nodes in finite element model. The main 
deficiency of this method is high volume of calculation 
because of repetitious remeshing in analysis or making 
the primary assumption of crack growth path before 
analysis. Among the papers dedicated to numerical
methods based on discrete crack model in dynamic
finite element, one can mention the work of Kobayashi 
et al. [1] and Jung et al. [2]. In their works, node release 

technique is applied in predicted path for crack growth. 
In all mentioned works, crack growth path is predicted 
and assumed before analysis. 

In BEM, differential equations are converted into 
integral equations witch are applied over the boundary. 
Then the boundary is divided into boundary elements 
and numerical integration is done over the boundary 
elements. If boundary conditions are satisfied, as the 
other numerical methods, a system of linear equations 
is obtained that can be solved to find the particular 
solution of the problem.

BEM could be applied for more complex boundary 
conditions and geometry. In addition, all
approximations are carried out over the boundaries in 
this method. Thus, domains with high gradient variation 
could be modeled with high accuracy in comparison 
with FEM. This is the advantage of applying BEM in 
fracture mechanic problem. BEM requires less time for 
data preparation due to modeling of boundary and it 
causes one degree reduction in problem dimension and 
remeshing. The latter advantage is of so much
importance in initial design studies, crack growth and 
contact problems which need remeshing. Other
advantages of BEM are high accuracy in stress and 
displacement fields in the domain and less memory 
requirements in comparison with other methods
because   of   reduction   of   nodes   and   elements.   In
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addition, in BEM, inner points are optional, thus the 
solution can be applied to a certain part of the inner 
domain.

Reducing the dimension of the problem is one of 
the positive  aspects  of  BEM. On the other hand, in 
two-dimensional problems, only the boundary of the 
region is meshed and in three-dimensional problems 
only the surface of the region is modeled. In
comparison with the other applied methods, BEM leads 
to a very smaller equation system. In addition, regions 
with high-stress concentration could be modeled with 
high efficiency, because in those regions, the dimension
of the problem reduces one degree. This is the major 
reason of applying BEM in fracture mechanic
problems.

Dynamic crack growth problem is studied by BEM 
using different techniques. Gallego and Dominguez [3] 
applied multi-region BEM in dynamic crack growth 
problem. They used time-domain with quarter-node
elements. In multi-region method, fictitious boundaries 
which pass through the crack path are not unique. This 
is the problem of the multi–region method which in 
step by step analyses of crack growth, fictitious
boundaries must be frequently defined at every step of 
crack growth and this problem makes automatic
remeshing a difficult task. Portela et al. [4] and MI and 
Aliabadi [5, 6] presented an application of dual
boundary element method (DBEM) for mixed mode
crack growth in two-dimensional and three-dimensional
linear elastic fracture mechanics. In [7] the time domain 
method combined with the DBEM presented by
Fedelinski for mixed mode rapidly crack growth.

Gonzalez et al. [8] have reported an
implementation  of  the  DBEM formulation dealing 
with the analysis of crack growth in structures.

Millings et al. [9] have analyzed the dynamic
fatigue crack growth by applying the BEM.

Silveira et al. [10] have presented a crack growth 
prediction analysis  based on the numerical Green's 
function and on the minimum strain energy density 
criterion for crack extension, also known as S-criterion.
They have been contemplated crack extensions for two 
dimensional linear elastic fracture mechanics problems 
by using BEM.

Lei et al. [11] have simulated the dynamic process 
of propagation and /or kinking of an interface crack in a 
two dimensional bi-material by applying the multi
region BEM.

Yan [12] has developed automated simulation of 
multiply crack fatigue propagation for two dimensional 
linear elastic fracture mechanics problems by using 
BEM. In this paper the displacement discontinuity
method with crack–tip element have been proposed by 
the author.

In  the  above  mentioned  references, contact of 
crack faces is not considered. In this study, the
formulation  of  simultaneous  analyses  of  dynamic 
crack  growth  and  contact  of  its faces in time domain 
is presented. In this formulation, the time domain
DBEM  is  used  and  the  displacement boundary 
integral   equation   is applied to  one  crack  surface
and  the  traction boundary integral equation to the 
other. Also additional contact equations are categorized 
and applied as constraint equations using static
condensation method. 

For each increment of crack extension a single 
region analysis is performed. When the crack
propagation is modeled with new discontinuous
elements, remeshing of existing boundaries is not
required because of the single region analysis
application. Further, the new discontinuous elements
and the elements on the existing boundaries are
employed to construct the total structural mesh
representation easily and this is the advantage of the 
introduced method.

THE TIME DOMAIN DBEM FOR CRACK 
GROWTH FORMULATION

In non-linear problems, for example when the
boundary conditions or geometry of the problem
change, superposition principal as in frequency-domain
can not be used and the problem must be solved in 
time-domain. Crack growth in the domain causes non-
linearity of the problem and as mentioned before, it 
should be solved in time-domain.

The displacement integral equation relating the
point x ′ on the boundary Γ of the region V, at time t 
can be written as [14]:
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(1)

where u1 is the displacement on the boundary, ti is the 
boundary stress vector and ρ is the mass density. The 
term cij is jump term which is equal to δij when  x′ is in 
the domain V and 0.5 δij when x′ is on the smooth 
boundary Γ. Uij (x,t,x′,τ) and Tij (x,t,x′,τ) represent the 
traction and displacement fundamental solutions at a 
boundary point x at time t due to a unit load placed at 
location x′ at time τ.
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For a problem which is not subjected to body 
forces and which has zero initial displacement and 
velocities, the displacement of a point x′ can be
presented by the following integral equation:

( ) ( ) ( )
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(2)

The mathematical degeneration of the equation (2) 
when the two crack surfaces are considered coplanar 
was shown by Kobayashi et al. [1]. The symmetric 
crack geometry problems can be solved by applying 
symmetric boundary condition and modeling only one 
of the crack surfaces.

The most general method for crack problem
modeling (whether symmetric or not) is dual boundary 
element method (DBEM). The DBEM incorporates two 
independent boundary integral equations, which are the 
displacement equation applied on one of the crack
surfaces and the traction equation on the other.

The traction integral equation is obtained by
differentiating the displacement equation, applying
Hook's low and multiplying by the outward normal at 
the collocation point. For points which belong to the 
smooth crack surfaces, the traction equation is: 
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where ni(x′) are components of the outward unit normal 
vector at the collection point x′:Ukij (x,t;x′,τ) and Tkij

(x,t;x′,τ) are fundamental solution of elastodynamics 
for the traction equation. Tij and Ukij and Tkij could be 
obtained by using place differential of Uij [16]:
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Where λ and µ are the Lame constants.
For numerical solution of a general mixed-mode

crack problem, both space and time variations must be 
discretized. The boundary Γ is divided into M boundary 

elements in which there are P nodes. The observation 
time t is divided into N time step sized Q. The time 
variation of boundary variable is characterized by time 
step discretization. Displacement and traction are
approximated within each element using space
interpolation function Np(ζ) and within each time step 
using temporal interpolation function Mq(ζ). The
boundary integral equations are applied for all of the 
nodes of the boundary elements. The incremental
extension of the crack is modeled by adding new
elements at its front. The number of the elements in 
time step n is:

0 cM(n) M M (n)= + (7)

where Mo is the number of first elements and Mc(n) is 
the number of added elements which is created because 
of extension of the crack till step n. After discretizing 
both space and time variable, the displacement and 
traction integral equations are [4, 16]:
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where L1 and L2 are respectively the number of
collection points for which the displacement and the 
traction equations are applied; L1+L2= L, the total
number of nodes; Jm is the Jacobian and ζ is the local 
coordinate (-1≤ζ≤1). Note that, in equations (8) and (9), 
the number of elements and the number of boundary 
nodes depend on the time observation t, L1 and L2 are 
increased with extension of crack. The place of
collection points does not vary with time. 

A distinct set of boundary integral equations is 
obtained by applying the displacement equation (8) for 
collection points along the external boundary and along 
one of the crack surfaces and the traction equation (9) 
for the apposite surface of the crack.

In [16], evaluation of the time integrals and the 
space integrals has been explained. After discretization, 
the following matrix equation at the time observation t 
(stepN) is obtained [16]:

[ ] { } [ ] { } [ ] { } [ ] { }( )
N 1

NN NN Nn NnN N n n

n 1

F u G t G t F u
−

=

= + −∑ (10)

where {u}N and {t}N contain nodal values of
displacements and tractions at the time step N; [F]Nn

and [G]Nn depend on fundamental solutions and
interpolating function. The superscripts Nn emphasize 
that the matrix depends on the difference between the 
time steps N and n. The columns of matrices [F]NN and 
[G]NN are reordered according to the boundary
conditions, giving new matrices [A]NN and [B]NN. The 
matrix [A]NN is multiplied by the vector {x}N of
unknown displacements and tractions and the matrix
[B]NN by the vector {y}N of known boundary conditions,
as fallows:

[ ] { } [ ] { } [ ] { } [ ] { }( )
N 1

NN NN Nn NnN N n n

n 1

A x B y G t F u
−

=

= + −∑ (11)

In each time step, only the matrices which
correspond to the maximum difference N – n are
computed. The rest of the matrices are known from the 
previous steps. The matrices [A]NN and [B]NN  are 
calculated in the first step only since they are the same 
at each time step: [A]NN = A  and [B]NN  = B  In order to 
solve the matrix equation (11), the reverse of [A]NN

must be calculated only in the first step. When growing 
crack, the following phases are considered:

• The direction of crack growth is calculated
according to intensity factor and the crack growth 
speed.

• The new element is added to the front of the
growing crack. In this phase the number of nodes is 
increased.

• For n = 1 matrices [F]NN and [G]NN is calculated 
according to new geometry of crack.

• For n = 2 to n = N matrices [F]NN and [G]NN have 
to be corrected. Then matrices [G]NN  and [F]NN

which have been calculated and the columns and 
rows which correspond to the new element and 
nodes are added and then Matrix [A]NN must be 
reversed.

• Equation system is solved and the solution process 
is repeated.

In equation (10), the phrase

[ ] { } [ ] { }( )
N 1

Nn Nnn n

n 1

G t F u
−

=

−∑

is the effect of loading in previous steps on the current 
one. When growing crack, note that new nodes which 
were within the field in previous steps are added to the 
boundary geometry. It is not required to calculate
displacement and traction of these nodes in previous 
steps.

CONTACT OF CRACK FACES PROBLEM

Contact of crack faces must be considered for more 
accurate cracked structure behavior simulation. There 
are three different contact modes

• Stick mode 
• Slip mode
• Separation mode

In Fig. 1 a pair of corresponding points on crack 
faces and their local coordinates  is shown. 
Coulomb's law of limiting friction is considered as a 
primary principle in study of crack faces. Stick and slip 
modes are dependent on the coefficient of friction µ. 
Tangential traction tt and normal traction tn in each pair 
of contact nodes are related to each other as follows:

• |tt|<µ|tn|, then contact nodes are stuck together.
• |tt| = µ|tn|, then tangential slip between contact 

nodes is possible. tt is in the opposite direction of 
the slip.

• |tt|>µ|tn| is not accepted.

In two dimensional boundary element problems, 
each node is defined with four variations (t t, tn, ut, un).
The problem is solved when exactly two of the four 
variations are known. In contact problems, all four
variations are unknown for nodes which are in contact 
surface. There  are eight variations and four equilibrium 
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Fig. 1: Two contact elements and two pairs of contact 
nodes and normal and tangential vector

equations for a pair of contact node and more four 
equations are added if contact mode is definite.

Additional equations for separation mode can be 
written as (Fig. 1): 

a
t
a
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b
t

b
n

t 0

t 0
t 0

t 0

=

=

=

=

(12)

Additional equations for stick mode can be written 
as (Fig. 1): 

a b
t t
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n n
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t t
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Additional equations for slip mode can be written 
as (Fig. 1): 

a b
t t
a b
n n

a b
n n

t t 0

t t 0

u u 0

− =

− =

+ =

(14)

In equation (14), a a
t nt t=−µ  if a

tt >0 and a a
t nt t=+µ if a

tt <0.
Not knowing the contact condition of pair of

contact nodes, some iteration are required for satisfying 
contact conditions in each time step. The algorithm
which is applied for preliminary assumption of contact 
condition of contact nodes and recognition of contact 
mode is effective on the number of iteration.

In dynamic loading when there are some cracks or 
a crack in the body, each pair of opposite nodes on 
crack surfaces can be a pair of contact nodes and there 
are eight unknown displacement and traction for each 
pair of contact nodes. Thus after moving the unknown 
tractions of contact nodes to the other side of the 
equation, the equilibrium equations of the structure and 
the additional equations can be written as:

N
n n n n n n

m n m n m m

[A] [G] {x} {f }
[U] [V] {t} {0}

× ×

× ×

′      =    
     

(15)

where n and m are respectively the number of
equilibrium  equations  (twice  the  number of nodes ) 
and  the  number  of  additional  contact  equations 
(four  times  the  number  of  pair  of  contact nodes ); 
The  matrices [U] and [V] are respectively the
additional  displacement and traction contact equations 
which  have  been  calculated  through  equations  (12) 
to  (14);  {t}  contains  the  traction  of  the contact 
nodes.  the  matrix  [A]  in  equation  (15)  is  the same 
as the matrix [A]NN in equation (11). {x} is the
boundary  variable  (related  to  external  boundaries) 
and  the  displacement  variable  (related to crack
surface nodes). {fN}n is the time history effects of
previous  steps  in  all  nodes  and  effects  of  loading 
in  current  step  in  external  boundary nodes. The 
matrix [G′] contains the negative values of the [G]NN

columns. Each column is related to an unknown
member of vector {t}.

The static condensation method is applied for
solving  the  problem  in  order  to save time and 
memory. The following equations are derived from
equation (15):

[A]{x} [G]{t} {f}′+ = (16)

[U]{x} [V]{t} {0}+ = (17)

Derived from (16):

1 1{x} [A] {f} [A] {G}{t}− − ′= − (18)

Substituting {x} from (18) into (17) and
calculating unknown in contact nodes {t}, the following 
is obtained:

11 1{t} [U][A] [ G ] [V] [U][A ]{f}
−− −′ = −  (19)

After any iteration, {t} is calculated with the same 
presumed conditions. If the presumed conditions in all 
nodes are satisfied, repetition stops. Otherwise the
presumed mode is corrected.

Due to the dynamic nature of loading and for
achieving numerical convergence, in the first iteration, 
all the pairs of contact nodes are assumed in separation 
mode. If in the subsequent iteration, the opposite nodes 
overlap, they are considered in stick mode. If the real 
contact mode is slip mode, direction of the tangential 
traction is easily recognized throughout this approach. 
Table 1 illustrates the decision state for the mode of
contact nodes.

According to Table 1, if contact has happened, 
Table 2 illustrates the contact mode.
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 e = 20 m
m

b = 40 mm

σ

 d = 60 m
m

Crack R of length 2mm 
Crack L of length 2 mm 

 a = 80 mm 

σ

Fig. 2: T-shaped crack with two edge crack under in transverse loading

APPLICATION OF THE PRESENTED METHOD: 
CRACK GROWTH AND CONTACT OF CRACK 
FACES IN EDGE-CRACK IN T-SHAPED PLATE:

T-shaped plate has two edge-cracks (Fig. 2). The 
material properties as below:

Young's modulus E = 0.2*1012  pa, Poisson's ratio
ν = 0.3, the mass density ρ = 8000 kg/m3. The plate is 
loaded by the stress σ0 with Heaviside-function time 
dependency. The plate is under the state of plane strain. 
Problem dimensions are:

0a 80mm b 40mm d 60mm e 20mm a 2mm= = = = =

If dynamic stress intensity factor are normalized 
with respect to K0( 0 0 0K a= σ π )

where σ0 is the applied pressure and a0 is the initial 
crack length. The problem is under σ = σ0H(t) loading. 
Different cases are studied:

Case (a): Crack growth and crack face contacts are not 
considered. The time step ∆T = 1µs and 300 time steps 
are considered. The normalized DSIF KI/K0 and KII/K0
are plotted in Fig. 3 the show oscillation around static 
stress intensity factor this verifies which agree with the 
results. These factors are as follows:

KII/K0 = 4.71          KI/K0 = ±18.02

In other words, the above factors oscillate around 
their  corresponding  static  values  which are 18.02 and 

Table 1: Illustration of the decision state for the mode of contact 
nodes

Assumption Decision
--------------------------------------------------

Previous Separation Contact

Separation a b
n nu u 0− − > a b

n nu u 0− − ≤

Contact a
nt 0≥ a

nt 0<

Table 2: Illustration of contact mode

Assumption Decision
------------------------------------------------------

Previous Stick Slip

Stick a a
t nt t< µ a a

t nt t≥ µ

Slip a a b
t t tt . ( u u ) 0+ > a a b

t t tt .(u u ) 0+ <

4.71 in crack L and -18.02 and 4.71 in crack R.
Considering  the  negative  value  of the normalized 
DSIF in the first mode in crack R, it is clear that the 
right  side  crack  must  be  closed  which  is  simulated 
later in this paper.

Case (b): Contact of crack faces is considered but crack 
growth is not. 50 time increments are considered. The 
normalized DSIF KI/K0 and KII/K0 are plotted in Fig. 4 
for the cracks L and R and the equivalent normalized 
DSIF are also shown. It can be seen that the right side 
crack R is closed. The nonnegative value of the
dynamic stress intensity factor of the mode I of the 
fracture verifies the formulation of the problem.
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Fig. 3: Normalized DSIF for T-shaped plate in transverse loading: Case(a)

Fig. 4: Normalized DSIF for T-shaped plate under transverse loading: Case(b)

Fig. 5: Normalized DSIF for T-shaped plate under transverse loading: Case(c)
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Fig. 6: Normalized DSIF for the crack R: Cases (a) and (b)

 Fig. 7: Normalized DSIF for the crack L: Cases (a) and (b)

As  it  can  be  seen  in  Fig. 4, by  the  closing  of 
the  crack  R, the  normalized  DSIF  in  the  mode  I  of 
the  fracture  is  equal  to  zero  and  the  mode  II DSIF 
is increased compared to that of crack L. This
procedure results in crack L having more tendency for 
growth compared to crack R. It should be also noted 
that in this paper, the equivalent dynamic stress
intensity factor is equal to the stress intensity factor of 
the mode I of the fracture which generates the same 
circumferential stress [16].

Case (c): In addition to considering the contact of the 
crack faces, the leftmost crack is allowed to grow. For 
crack L, the  normalized  critical  intensity  stress
factor for stable cracks is assumed 4. In crack R, the 
normalized critical intensity stress factor is assumed to 

be a large value. The crack growth speed, if needed, is 
assumed to be 1000 meters per second. [16]

Changes in the normalized stress intensity factors 
are shown in Fig. 5. It can be seen that the crack growth 
KII is decreased. In fact, the crack L is grown in a way 
that the KI is dominated and the K2 is considerably 
decreased. This justifies the change in the crack growth 
path which is shown in Fig. 5.

The comparison of the normalized stress intensity 
factors between the cases b and c for cracks R and L is 
shown in Fig. 6 and 7 respectively.

As  it  can  be  seen  in Fig. 5-7, crack growth 
causes  stress  intensity  factor  in  the  second  mode of 
the fracture to decease. The growth of the crack L
signifies the slip mode in the crack R. The crack growth 
path is shown in Fig. 10a.
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Case (d) Case (c)

Fig. 8: Normalized DSIF for the crack L: Case (d)

Fig. 9: Normalized DSIF for the crack R: Case(d)

Fig. 10: Crack growth for T-shaped plate in transverse loading: Cases (c) and (d) 
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Case (d): In addition to the contact of the crack faces, 
both cracks are allowed to grow. The normalized
critical stress intensity factor is assumed 4 for both 
cracks. The cracks, in case of growth, grow at the speed 
of 1000 meters per second [16].

Changes  in  the  normalized  stress  intensity 
factors  in  separation  mode  and  slip  mode  are 
shown in Fig. 8 and 9.

The growth of the crack L is similar to case
(c).Crack R is grown at time step 18 and changes its 
path which causes KI to increase and KII to decrease 
(Fig. 9).The crack growth path is shown in Fig. 10b.

DISCUSSION

One of the difficulties of applying discrete crack 
model in FEM is the problem of modeling of the crack 
growth and its path. In other word the crack growth 
path must be assumed before analysis and remeshing 
must be done by using complex algorithms while the 
crack grows. Pre assuming the crack growth path before 
the analyses leads to notable errors in the results and 
remeshing algorithm takes so much time especially in 
dynamic analysis. Note that in singular problems i.e. 
crack problems and fracture mechanics, results are so 
dependent on mesh configuration. By applying the
presented method, such defects are not faced and the 
formulation of simultaneous analysis of dynamic crack 
growth and contact of its faces in the time domain is 
introduced. In this method, crack is modeled in one 
region  which  causes  reduction  of  the  analysis time
and  degrees  of  freedom. Note that interface cracks 
can  also  be  modeled  with  the  presented  method. 
With appropriate criterion, crack branching can be
analyzed, too. For modeling the grown crack parts, the 
new elements are added to the crack front and
remeshing is not required. The application of this
method  is  shown  in  growth  and  contact of edge 
cracks  in  T-shaped  plates.  Free  vibration  around
the static response and the nonnegative values of the 
mode I stress intensity factor when contact is
considered  justifies  the  proposed  formulation. It 
should be noted that in the proposed method, the 
internal cracks can be modeled with ease. In case of 
having  a  proper  criteria, the branching of the cracks 
can be modeled without any additional implementation. 
In order to model the grown parts, it is enough to add 
new elements to the tip of the crack without remeshing. 
The  proposed  method is applicable in infinite and 
semi-infinite domains. For instance, fracture and
growth  of  faults  growth problems in earthquakes can 
be solved with this method.
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