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Abstract: The main focus of the study was to model and analyze the data on the uptake of heavy metals 
specifically iron in spinach (Amaranthus hybridus L). The most common empirical model used is the simple 
regression but it was found that this model was not adequate based on the relationship and the value of R2.
By examining the plot of the accumulation of the heavy metal uptake it was found that it followed a 
nonlinear trend. Hence, a number of empirical models such as exponential, logistic, Gompertz, Weibull and 
piecewise regression were considered. SAS was used to estimate the model parameters, test significance and 
access goodness of fit of the statistical data. The simple change-point piecewise regression model was 
considered more appropriate modeling technique to be employed.
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INTRODUCTION

In general, heavy metals become toxic by forming 
complexes or ‘ligands’ with organic compounds. These 
modified biological molecules lose their ability to
function properly and result in malfunction or death of 
the affected cells [1]. The study of heavy metal uptake 
in spinach showed the presence of considerably high 
amounts of iron (Fe) compared to other hazardous 
metals like Cadmium (Cd), Cromium (Cr), Copper
(Cu), Manganese (Mn), Plumbum (Pb) and zinc (Zn). 
The concentration of iron is the highest and varies as 
much as four times more compared to Mn and five 
hundred times more compared to Cd. Iron is one of the 
heavy metals that is found in large amounts in the earth. 
Plant uptake is one of the major pathways by which 
iron in soils enters the human food chain. Iron in the 
form of supplements is very beneficial to our body. 
High concentration of iron exceeding the normal level 
may result in malfunction of human internal organs 
especially the liver and kidneys [2]. According to the 
Malaysian Food Act [3], concentration of heavy metals 
permitted in vegetables and fruits were 1 mg/kg and 
300-500 mg/kg intake is considered critical. The “Top 
20 Hazardous Substances” list according to The
Agency for Toxic Substances and Diseases Registry 
(ATSDR) in Atlanta, USA does not include iron [4]. 
Nevertheless, iron is a heavy metal of concern,
particularly because ingesting dietary iron supplements 
may acutely poison young children, such as a five to 

nine-mg iron tablet for a 30-lb child. In Dietary
Reference Intake (DRI) the amount of safe intake for an 
adult is listed to be as high as 18 mg/day and for 
children below 8 years old, 10 mg/day [5]. 

MATERIALS AND METHODS

Non linear regression model: The main objective of 
the study was to model the relationship between
dependent variables and the independent or explanatory 
variables. In this context, Fe uptake in mg/kg by
spinach will be the dependant variable and number of 
days, the independent variable.

The nonlinear regression extends the linear
regression model for use with much larger and more 
general classes of function. According to Myers et al.
[6], any model that is not linear in the unknown 
parameters is a nonlinear regression model. It is used 
when a curvilinear relationship exists between the mean 
response and a predictor variable. For example, with a 
sample of n observations, the regression relationship is 
of the form

i i iy g(x ; ) fori 1,2, . . . ,n= β + ε = (1)

where g(xi; β) is some specific function which is
nonlinear in one or more of x and β = [β0 β1…βp]T are 
parameters and the errors are normally and
independently distributed with constant variance, that is 
εi ~ i.i.d. N(0,σ2).
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Piecewise  regression  models: This model is known 
as  the segmented regression model. It is made up of 
two sets of lines separated at a change point somewhere 
along the range of the predictor variable. When the 
change  point  is unknown the model is highly
nonlinear. Segmented regression models can be
continuous if the segments converge at the change 
point. This model becomes discontinuous if the change 
points suddenly drop or jump in the mean responses. 
For  continuous models, the segmentation can be
smooth or abrupt, depending on whether the derivatives 
with  respect  to  the  variable, exist at  the change 
point.

In the simplest case, one of the straight lines is a 
horizontal plateau. This is called a plateau model, also 
referred to as a threshold model when the horizontal 
response corresponds to some threshold phenomenon. 
For a left-plateau model

0 i

1 2 i i

                      if x
g(x; )

(x )   if x
β ≤ τ

β = β + β − τ > τ
(2)

for use in equation (1). In the special case of β0 = 0, 
equation (2) is called a truncated linear regression 
model. The mean response at the change point is 
assumed to be discontinuos in (2). Thus g(xi; β) jumps 
(or drops) a distance of β1 - β0  at τ = 0. For unknown τ,
any plateau model is inherently nonlinear. To fit the 
(left) threshold mo del the PROC NLIN was used with 
the Levenberg-Marquardt fitting algorithm. To find the 
point estimates for the β parameters and τ, nonlinear 
least squares were used. Inferences on these parameters 
followed the large-sample method [7]. 

Another type of piecewise regression models is the 
simple change-point model where the response is
essentially flat for most of the x values, except it
changes abruptly for some values of x. Thus this data 
was considered as two segments of the simple plateaus 
of the form:

1 i

2 i

                    if x
g(x; )

                    if x
β ≤ τ

β = β > τ
(3)

Parameter estimation in a nonlinear system:
Parameter estimation can be done via several methods 
namely  nonlinear  least  squares, the geometry of linear 
and nonlinear least squares, maximum likelihood
estimation, linearization and the Gauss-Newton
method, Marquardt compromise and others. Some of 
the most commonly used methods are:

Non-linear Least Squares (LS): The least squares 
function of (1) is of the form

[ ]
n

2
i i

i 1

s( ) y f ( x , )
=

β = − β∑ (4)

To find the LS estimates, the equation (4) must be 
differentiated with respect to β. This will provide a set 
of p normal equations. The expectation of the function 
is a nonlinear function. The normal equations are

[ ]
n

i
i i

i 1 j b

f ( x , )
y f ( x , ) 0   for j 1,2, . . . ,p

=
β=

 δ β
− β = = 

δβ  
∑ (5)

As an example, consider the nonlinear regression 
model of the form:

2x
1y eβ= β + ε

The LS normal equations for this model will be as 
follows:

2 i 2 i

2 i 2 i

n
b x b x

i 1
i 1
n

b x b x
i 1 1

i 1

y b e e 0

y b e b e 0

=

=

 − = 

 − = 

∑

∑

These equations are not linear in b1 and b2 and no 
closed-form solution exists. In general, iterative
methods must be used to find the values of b1 and b 2.

Maximum Likelihood Estimation (MLE): If the
distribution of the error is known then the method of 
likelihood estimation can be used. If the errors are
normally and independently distributed with constant 
variance, application of the method of maximum
likelihood to the estimation problem will lead to least 
squares.

In considering model (1), if the errors are normally 
and independently distributed with mean zero and 
variance σ2, then the likelihood function is 

[ ]
n

22
i i2 2

i 1

1 1L( , ) exp y f ( x , )
2 2 =

 β σ = − β πσ σ 
∑  (6)

Maximizing the likelihood function is equivalent to 
maximizing the log-likelihood:

[ ]
n

22 2
i i2

i 1

n 1L( , ) ln(2 ) y f ( x , )
2 2 =

β σ = − πσ − − β
σ ∑ (7)

Choosing the vector of parameters b that
maximizes the log-likelihood is equivalent to
minimizing the residual sum of squares. Therefore,
least squares in nonlinear regression are the same as 
MLE.
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Marquardt’s compromise: The method that will be
used in this study is the SAS procedure PROC NLIN 
that employs the Marquardt compromise techniques in 
parameter estimation. Marquardt proposed computing 
the vector of increments at the kth iteration from

k k p k k k( D D I ) D (y f )  where 0′ ′+ λ θ = − λ >


Marquardt [8] used a search procedure to find a 
value of λ that would reduce the residual sum of
squares at each stage. The PROC NLIN in SAS begins 
with λ = 10−8. A series of trial-and -error computation 
are done at each iteration with λ repeatedly multiplied 
by 10 until

k 1 kS(b ) S(b )+ <

This general procedure is often called Marquardt’s 
compromise because the resulting vector of increments 
produced usually lies between the Gauss-Newton vector 
in the linearization procedure and the direction of the 
steepest descent [6].

Statistical inferences from nonlinear regression:
Inferences on the unknown parameters in a nonlinear 
regression should be base on F statistics such as

calc
e

SSE(RM) SSE(FM)/ e
F

SSE(FM)/df(FM)
− ∆

=  (8)

Where SSE is the sum of the squared errors
calculated under the full model (FM) or under the
reduced model (RM). The degree of freedom associated 
with each error terms are dfe (FM) and dfe (RM), with 
?e+dfe(RM) = dfe (FM) [7]. For model adequacy
assessment, residual plots can provide a good indicator 
for the test.

Polynomial regression model: This model is a linear 
regression model with an extension of simple linear
relationships with the addition of higher order
polynomial terms. A p-th order polynomial regression 
model is:

2
i 0 1 i 2 i

p
p i i

Y (x x) (x x) ...

(x x) , i 1,. . . ,n

= β +β − +β − +

+β − + ε =
(9)

with the usual homogeneous-variance, normal-error
assumption: ε ~ i.i.d. N(0,σ2), Also, it is assumed that 
p<n–1  and that there should be at least p+1
distinguishable values among the xi′s. This model is 
used to represent simple curvilinear relationships
between E[Yi] and xi. Parameter estimates and
statistical inferences follow the normal linear regression 
procedure.

RESULTS

Example: A set of data on heavy metal uptake by 
spinach leaves, stems and roots was used as an
example. The dependent variable was the concentration
of Fe (in mg/kg) absorbed by the spinach leaves, stems 
and roots and the independent variable was the number 
of days after sowing [9] Scatterplot from the raw data is 
as shown in Fig. 1. 

This  provided  a  guideline  to  initially recognize 
the  shape  of  the model whether it is linear, nonlinear 
or polynomial, for later steps in modeling. From the 
plot, is assumed to be the shape more toward the
nonlinear model, specifically the piecewise
characteristic, as the first two points look like one
straight line with another straight line below. Three
types  of  regression  models  will  be  tested  to  model 
the data which are polynomial, exponential, simple
change-point piecewise and right-plateau piecewise
regressions models. The conclusion will be based on 
the results of the model fitted, residual plots and
comparison of R2 and  P-values. Finally, the best fit 
models shall be known. The SAS PROC NLIN will be 
used for nonlinear regressions and the PROC REG for 
polynomial regression. The first step will be to find the 
equation for the first part and the second part of the 
piecewise regression model, their initial estimated
values and their derivatives for β0, β1, β2. The values of
β and τ to be defined as part of an input in the SAS 
NLIN procedure. 

The piecewise regression model for the right-
plateau model would be of the form

0 1 i i

2 i

(x )            if x
g(x; )

                               if x
β +β − τ ≤ τ

β = β > τ
(10)

According to Piegorsch and Bailer [7], to fit the 
left threshold model the PROC NLIN should be
employed with the Levenberg-Marquardt fitting
algorithm. This requires the partial derivatives of (8) 
with respect to the unknown parameters. The first
derivatives are simply:

1
0 1 2

g g g g
1,  x ,  1,

δ δ δ δ
= = − τ = =−β

δβ δβ δβ δτ

The initial estimates from the data of Fe absorption in 
leaves, suggest that segmentation occurs between the 
second and the third data points. Hence, initial 

0
1

(8 11) 9.5
2

τ = + =

For   the   slope   of   the   right   linear  segment, 
the  two  data  pairs  are regressed to  get  the  slope and 
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Fig. 1: Scatterplot for Fe uptake in Spinach in leaves stems and roots.
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Fig. 2: The plot of the fitted right-plateau piecewise regression line together with scatterplots for Fe in spinach 
leaves, stems and roots .
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Fig. 3: Residual plots from fitting of right-plateau piecewise regression model to Fe uptake in spinach leaves, stems 
and roots.
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Fig. 4: The plot of the fitted simple change-point piecewise regression lines together with scatterplots for Fe in 
spinach leaves, stems and roots.
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Residual plot from fit model of
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Fig. 5: Residual plots from fit of simple change-point piecewise regression model for Fe uptake in spinach leaves, 
stems and roots.

β00 = 26.47563 and β10 = -1.73487. For the horizontal-
plateau on the right (Fig. 2), the β20 value is obtained by 
taking the mean of the last five Fe concentrations:

20

1.8947 1.32 2.1277
/ 5 2.09834

2.085 3.0643
+ + 

β = = + + 

Using these derivatives and initial values the SAS
PROC NLIN program is then run. The same procedures 
are done for stems and roots. Below are the results for 
modeling using the piecewise right-plateau regression 
model:

The fitted model for Fe in spinach leaves is: 

i i

i

9.9944 1.7349(x 9.5)     if x 9.5
g(x; )

2.0983 if x 9.5
− − ≤

β =  >

The fitted model for Fe in spinach stems is:

i i

i

13.3148 0.7677(x 9.5)     if x 9.5
g(x; )

1.9495   if x 9.5
− − ≤

β =  >

The fitted model for Fe in spinach roots is:

i i

i

13.5709 0.5380(x 9.5)     if x 9.5
g(x; )

3.0651   if x 9.5
− − ≤

β =  >

The goodness of fit test will be done on the data of 
Fe in spinach leaves. The results show a rapid
convergence with P-values < 0.0001 indicating that the 
model is very significant. An approximate 95%
confidence intervals not containing zero implies that all 
the parameters contributed to the model and hence
should be kept in the model. The residual plots shown 
in Fig. 3 are reasonable. 

To test the null hypothesis, H0: β0 = β2 = 0, the 
discrepancy-approach was used as in (8), to calculate 
the F-statistic with SSE(RM) = 260.30718 with d.f
(RM)=6.

calc
(260.30718 1.5814)/(6 4) 129.36289

F = 327.2111
1.5814/4 0.39535
− −

= =

At α = 0.05, Fcalc was compared to F0.05(2,4)=6.944.
Since Fcalc exceeded this critical point, it can be
concluded  that β0  and β2  do  deviate significantly 
from zero. This was confirmed by the 95% confidence 
interval for β0 and β2 in Fig. 3 where 7.2342<β0<
12.7546 and 1.3176<β2<2.8790

Results for the simple change-point piecewise
regressions models are given as in Fig. 4 and the
residual plot in Fig. 5. The fitted model for Fe in 
spinach leaves is



Am-Euras. J. Agric. & Environ. Sci., 5 (2): 236-243, 2009

242

Scatterplot and fitted polynomial
model for spinach leaves

20

15
10
5

0

No of days
0 10 20 30

Scatterplot and fitted polynomial
model for spinach stems

20

15

10

5

0

No of days
0 10 20 30

Scatterplot and fitted polynomial model for
spinach roots

20

15

10

5

0

No of days
0 5 10 15 20 25

Fig. 6: The plot of the fitted polynomial regression model together with scatterplots for Fe in spinach leaves, stems 
and roots.

i

i

15.2              if x 9.5
g(x; )

2.1                if x 9.5
≤

β =  >

The fitted model for Fe in spinach stems is:

i

i

15.6              if x 9.5
g(x; )

1.9                if x 9.5
≤

β =  >

The fitted model for Fe in spinach roots is 

i

i

15.1           if x 9.5
g(x; )

3.06           if x 9.5
≤

β =  >

Results  for  the  polynomial  regression  models 
are  given  in Fig. 6. The study showed that fitted 
models  for  Fe  uptake in leaves, stems and root parts 
are best represented by the polynomial regression
model.

The fitted model for Fe in spinach leaves is:

2g(x; ) 15.67 2.65x 0.12xβ = − +

The fitted model for Fe in spinach stems is 

2g(x; ) 15.86 2.57x 0.11xβ = − +

The fitted model for Fe in spinach roots is 

2g(x; ) 13.93 1.98x 0.08xβ = − +

Table 1 lists the comparison among models used 
for estimating Fe uptake in spinach leaves, stems and 
roots. The model that can best represent Fe uptake in 
leaves was right-plateau piecewise regression and for 
both stems and roots the simple change-point piece 
regression model.

DISCUSSION AND CONCLUSIONS

Polynomial  regression  fits  the  data  rather  well 
for the leaves, stems and roots with R2equal to 92.6, 
91.8 and 91.6%, respectively. Simple change point
piecewise regression gives a much better fit with R2

equals to 97.0, 98.7 and 99.1%, respectively.
Comparing the three models, the simple change-point
piecewise regression is a more appropriate modeling 
technique  to  be  employed  for  the  above  data  sets. 
It  is  then  extended  to  piecewise  regression with 
right-plateau as discussed above. The latter gives R2

equal to 99.7% for leaves, 96.3% for stems and 94.1% 
for  roots. Taking into consideration the P-values and 
R2  as  shown  in  Table 1,  it  can  be concluded that the 
right-plateau  piecewise  regression  is the best model 
for assessing Fe uptake in spinach leaves whereas for 
stems and roots the simple change-point piecewise 
regression models are more appropriate. 
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Table 1: The p-values and R2 for polynomial, simple change-point and right-plateau piecewise regression models for Fe uptake in spinach
Polynomial Simple change-point Right-plateau

Fe regression model piecewise regression model piecewise regression model
uptake in --------------------------------------- ----------------------------------- --------------------------------------
spinach P-value R2 P-value R2 P-value R2

Leaves 0.0055 92.6% 0.0002 97.0% <0.0001 99.7%
Stems 0.007 91.8% <0.0001 98.7% 0.0002 96.3%
Roots 0.007 91.6% <0.0001 99.1% 0.0002 94.1%
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Fig. 7: Residual plots from fit of the polynomial regression model for Fe uptake in spinach leaves, stems and roots.

Analysis through piecewise regression models have 
shown that absorption of Fe is high particularly during 
the first eight days. After that it is reduced drastically 
from 15 mg/kg to about 2 mg/kg until day 20, after 
which it appears to increase again. It can be concluded 
that spinach should be harvested any time after the 11th

day. Even though Polynomial regression can be use to 
model the data the analyses are misleading. The general 
trend shows that Fe uptake is very high in the early 
stage of growth, declines between the 18th and the 20th

day but somehow continues to increase again after that 
in plants as the no of days increase. The model
indicates that spinach continues to absorb more Fe 
again after the 18th day, meaning that consuming the 
vegetable  after  this  period might be unsafe. Therefore, 

the polynomial regression model is not appropriate for 
interpreting the data. 
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