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Abstract: Using of fish pathology is well established as an essential section of the set of ‘biomarkers’ applied
in biological effects of variety pollutants monitoring programs in Europe such as International Council for the
Exploration of the Sea (ICES). Use of histopathological techniques allows investigators to examine specific
target  organs and cells as they are affected by exposure to environmental chemicals. Moreover, it offers a
means of detecting acute and chronic harmful effects of exposure in the tissues and organs of individual
animals. This review provides a general evaluation of the main pathological alterations reported in fish exposed
to contaminants.
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INTRODUCTION possible [3].

Xenobiotics derived from urban communities, ways. It is generally included approximately any
agricultural operations and industrial effluents, finally measurement indicating an interaction between a
released into the environment. In the context of pollution, biological system and a possible risk, which may be
aquatic systems are highly at risk because of their trend chemical, physical or biological [4]. It is exactly described
for accumulation relatively high concentrations of as an alteration in a biological response (ranging from
chemicals entering from surrounding terrestrial systems, molecular, cellular and physiological alterations to
thus, regardless of their source of entry to the behavioral changes) due to exposure to environmental
environment, water bodies are frequently stores for a large chemicals  [5]. Van Gastel and Van Brummelen [6]
variety of stressor chemicals [1]. redefined  the  term  ‘biomarker’ as any biological

During past several decades, aquatic toxicology response to an environmental  toxicants  at  the
changed its way from a explanatory approach, that was subindividual  level,  which  evaluated  inside  an
needed to investigate those concentrations of particular organism or in its products (urine, feces, hair, feathers,
pollutants in the water which were not well-matched with etc.) and reflecting a departure from the normal situation
the life of individual fishes, to deliberations of nonlethal that cannot be detected in the intact organism [6]. During
concentrations that do not lead to death over the short the past two decades, attempts have been made to
duration but do hurt the individual, so making it use identify and characterize biomarkers in a range of
resources to stay alive in a changed condition. Just the organisms from bacteria to humans to predict disease or
existence of particular xenobiotic in the part of an aquatic detrimental ecological effects [7- 10].
ecosystem does not signify harmful effects. Establishment The NRC [11] described biomarkers as “indicators
of links between external levels of exposure, internal levels signaling events in biological systems or samples
of tissue contamination and early detrimental effects is following chemical exposure” and recommended using of
needed [2]. biological indicators to determine: (1) biologically

Biomarkers  were   derived   from  investigation  in effective concentration, (2) harmful effects and (3)
this   field,  with  the  emphasis   on   host  responses. sensitive populations or individuals, in order to forecast
They demonstrate the multiple organ, tissue and cellular and maybe avert clinical disease. Actually, NCR had
sites of action and the range of responses that were placed the emphasis on human health in its original

The term ‘biomarker’ has been defined in several
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classification [11]. Adams [7] modified the original NRC perception of “cellular pathology” suggested by Rudolf
classification  to  comprise  characteristics  of  organisms,
populations, or communities that respond in assessable
ways to the environmental changes [7]. With the advance
of measurements for including other organisms such as
fish, their utility as a “marker” or as an “indicator” in
ecological settings was really in doubt [12].

The NRC suggested three kinds of biomarkers in
order to categorize responses as markers of exposure,
effect and susceptibility, each of which has been
discussed in terms of its potential use in ecological risk
assessment patterns [13]. Stressor exposure may resulted
in effects that may be defined as an early acclimatize
nonpathogenic result or as a more critical functionally
change, depending on the toxicant concentration and
mechanism of its action [3, 9].

Exposure to sublethal concentrations of
environmental chemicals may lead to the histological
structure alterations which can significantly alter the
function of tissues and organs. Histological and
ultrastructural changes in cells, tissues or organs can
afford good biomarkers of pollutant stress. Using of
histopathological changes as a biomarker has the benefit
of permitting researchers to examine specific target organs
and cells as they are affected by exposure to
environmental chemicals. Moreover, histopathology
makes it possible to detect both acute and chronic
changes of in the tissues and organs of individual
organisms. Hinton [14] proposed it is the common
characteristics of cellular organization that make
histopathological examination a precious tool in the
biomarker approach [14]. The histopathology biomarker is
a higher level response following chemical and cellular
interaction [3]. Histo-cytological responses are relatively
easy to determine and it can be possible to relate them to
individual’s health    and    fitness   which,  sequentially,
permits more extrapolation to population/community
effects. A wide range of histo-cytological alterations in
fish have been developed and recommended as
biomarkers to screen the effects of toxicants [15]. Cells
and tissues changes in fish are frequently used
biomarkers in many studies, but such alterations have
been observed in all vertebrates and invertebrates
livening in aquatic ecosystems. Histopathological
biomarkers represent tissue injuries occur in response to
previous or current contact of the organism to one or
more pollutants [12].

The opinion that disturbances in structure or
function of individual cells form the basis of a disease or
toxicity was first proposed in the 19th century with the

Virchow, known as the father of pathology [16].
Pathology has been a crucial and vigorous method in
established routine toxicology studies, carried out for the
purpose of risk assessment. In aquatic toxicology,
application  of the histopathology techniques in
assessing toxicologic pathology of organisms has many
advantages [16].

The present study reviews  the  most  important
histo-cytopathological alterations in fish, which have
been used as biomarkers in different international
pollution monitoring programs. These responses provide
information concerning the exposure, effects and
susceptibility of fish in the context of environmental
monitoring and the biomarker approach.

Histopathological Changes of Gill: The gills of a fish
comprise a multifunctional organ (respiration, ion
regulation, acid-base balance and nitrogenous waste
excretion) constitute over 50 percent of the total surface
area of the animal that make it sensitive to chemicals in
water. The reviews of Mallatt [15], Wood [18] and Au [17]
have provided extensive information on gill structural
alterations in fish as a result of toxicants exposure. Mallatt
[17] has provided a quantitative synthesis of more than
100 toxicological studies in which structural changes in
the gills were examined by light or electron microscopy.
Lifting of the lamellar epithelial cells away from the
basement membrane due to a penetration of fluid is the
most common lesion, which could be give rise to reduce
respiratory gas exchange by increasing diffusion distance
and decreasing interlamellar distance.  Fusion of
neighboring lamellae and epithelial rupture are perhaps
the direct results of pavement cell lifting and represent
more severe gill damage [15].

Necrosis of different lamellar and filament cells like
chloride and pavement cells is another most commonly
reported responses, but is more common for metals than
for organics or other pollutants, possibly since metals
directly interact with ion transport proteins and inhibit
their activity. Necrosis would be expected to increase
diffusion of ions and water. In true necrosis, Transmission
Electron Microscopy shows that organelles and
cytoplasmic volume swell and become more electrons
dense in necrotic cells. Ultimately cell membranes would
be ruptured and the contents possibly would be lost by
swamping to the external water. Leukocyte infiltration
should be also considered an adaptive response [19].
Hypertrophy of the pavement cells is possibly an event
associated with necrosis cell swelling. This lesion is also



World J. Fish & Marine Sci., 4 (3): 223-231, 2012

225

more commonly associated with metals. However, cell fusion, telangiectasia, edema with epithelial lifting and
hypertrophy  sometimes indicates the origin of pavement
cells which occurs when they shrink back to expose
increased chloride cell-surface area in return to acid-base
and ionic interruptions [20, 21]. Proliferation of mucous
cell, associated with excess mucus secretion, seems to
occur more frequently in result of exposure to metals than
to organic pollutants. Proliferation of pavement cells,
mucous cells and chloride cells seem to be protective
which limit the accesses of chemicals with the branchial
surface, on other hand they may also block respiratory
gas exchange and then lead to animal smothering [22].
Haaparanta et al. [23] reported chloride cell proliferation
as a significant pathological change in roach Rutilus
rutilus collected from polluted lakes in Finland [23].

Epithelial lifting, hyperplasia and hypertrophy of the
epithelial cells with partial fusion of lamellae are defense
mechanisms which result in the increase of the distance
between the external environment and the blood and thus
serve as a barrier to the entrance of contaminants [24, 25].
These alterations, more commonly associated with
chronic exposures than acutely lethal exposures, are
greatly increase the blood-to-water diffusion distance,
decrease interlamellar distance and lead to an total
reduction in the diffusive conductance of the gills to
respiratory gases [26, 27]. Lamellar aneurysms and blood
congestion with dilation of marginal channels together
with leukocyte infiltration could be considered part of an
inflammatory response and occur when fishes suffer a
more  severe type of stress [28]. Aneurysm is related to
the  pillar  cells  rupturing [29] as a result of a bigger flow
of  blood  or direct effects of chemicals on these cells.
This  alteration  is  a severe change, which its
improvement is possible, but more difficult than the
epithelial changes [24].

These are the gill lesions in response to a wide range
of contaminants, including organochlorines, petroleum
compounds, organophospates, carbonates, herbicides
and  heavy  metals  with  a greater reported occurrence
[15, 30, 32]. The most of gill alterations reported in the
literature,    even    though    concentration   dependent
(i.e. more severe in acute lethal exposures than in chronic
sublethal  exposures), are actually non-specific and are
not correlated with the kind of toxicant, exposure level
(acute or chronic), exposure medium (freshwater or
seawater), or fish species. Epithelial lifting and lamellar
fusion were observed in rainbow trout (Oncorhynchus
mykiss) exposed to petroleum residues [33]. The same
changes have also been reported in the gills of the fishes
exposed to organic toxicants [28] and metals [29, 34, 35].
Giari et al. [36] documented hyperplasia with lamellar

desquamation, in the gills of farmed European sea bass
(Dicentrarchus labrax L.) acutely treated with mercury
[36]. Field exposure to pulp and paper mill sewage resulted
in hyperplasia in the gills of shorthorn sculpin
(Myoxocephalus Scorpius) [37].

Definitely, the respiratory epithelium changes
cooperates the host respiratory ability. Moderate changes
don’t lead to mortality directly, but can harmfully affect
the functioning of the fish. On the other hand, severe or
extensive damage may directly cause death. Overall,
though tissue preparation for histopathological study is
time consuming, gill histopathology seems to be a
promising biomarker for general environmental pollution
monitoring.

Histopathological Changes of Liver: The liver carries out
essential body functions including regulation of
metabolism, synthesis of plasma proteins, energy storage,
storage of certain vitamins and trace metals and
transformation and excretion of steroids and detoxification
of xenobiotics. In general, liver is a target organ due to its
large blood supply that causes noticeable toxicant
exposure and accumulation and also its clearance function
and its pronounced metabolic capacity [38].

Numerous categories of liver pathology are present
as reliable biomarkers of toxic damage [39, 43], therefore
studies on liver histopathology in fish have increasingly
been incorporated in national marine biological effects
monitoring programs in both Europe and the USA [44, 45].

Myers et al. [46] generally classified flatfish hepatic
alterations into several distinct groups and it could be
possible to rank them according to their relative
importance as indicators of toxicant exposure: 1.
Degenerative lesions such as biliary epithelial cells
degeneration and polymorphism of hepatocytes and their
nucleus; 2. Foci of cellular alteration (FCA), including
basophilic, eosinophilic, clear cell and vacuolated foci; 3.
Benign neoplasm, including hepatocyte adenoma, bile
ducts cholangioma and blood vessels and capillaries
hemangioma; 4. Malignant neoplasms, including
hepatocyte carcinoma, cholangiocarcinoma and
hemangiosarcoma.

Specific non-neoplastic proliferate lesions including
hepatocytes regeneration, hyperplasia  of bile duct and
hepatic fibrosis in addition to general or non-specific
degenerative alterations such as cellular necrosis, hyaline
inclusion bodies comprise a second group of hepatic
lesions. Ultimately, inflammatory changes consists a third
group of liver alterations, which is considered as minimal
significant indicator of pollutant exposure, although this
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group can offer more information on the general health Hydropic vacuolation, presence of proteinaceous
status and condition of the fish [47].

Overall, liver histopathological lesions are not
specific to pollutants. For example, exposure to PAHs,
PCBs, DDTs, chloranes and dieldrin increases the
prevalence of liver lesions including neoplasm’s, foci of
cellular alteration (FCA), megalocytic heptoses (MH),
hepatocellular nuclear polymorphism (NP), hydropic
vacuolation (HV) in English sole (Pleuronectes vetulus);
while in winter flounder (Pleuronectes americanus),
exposed to PAHs, DDTs or chlordanes, non-neoplastic
proliferative lesions and non-specific necrotic lesions
significantly increased [48, 49, 50].

Fanta et al. [51] reported abnormalities such as
irregular shaped hepatocytes, cytoplasmic vacuolation
and nucleus in a lateral position in the siluriform
Corydoras paleatus exposed to organophosphate
pesticides. Pacheco and Santos [52] observed increased
vacuolation of the hepatocytes as a sign of metabolic
damage, perhaps correlated to exposure to polluted water.
Camargo and Martinez [35] observed signs of
degeneration (cytoplasmic and nuclear degeneration and
nuclear vacuolation) and the focal necrosis in the liver
parenchyma of fishes exposed to the water of the Cambe
River. These alterations have been reported as more
severe changes, which are more commonly associated
with the exposure of the fishes to contamination by
metals, such as copper [53] and mercury [54] and by
polychlorinated biphenyls (PCBs) [55].

Lesions including hepatocellular cytoplasmic
vacuolization, leucocytes infiltrations, blood congestion,
necrosis and fatty infiltrations were found in the liver of
catfish Clarias gariepinus treated with fenvalerate [56].
The same changes were reported by Teh et al. [57] in the
liver of 7-day-old larvae of the fish Sarcamento splittail
exposed to sublethal concentrations of esfenvalerate for
one week. However, using of liver histopathology as a
biomarker of contamination exposure may not be a highly
cost-effective method for pollution screening because it
needs much time and effort to prepare liver samples and
expected pathologists are also required to distinguish
hepatological alterations [15].

Histopathological Changes of Kidney: Kidney is the
primary organ for water elimination and is especially vital
for freshwater species in which efficient ion reabsorption
mechanisms  in  the  kidney  minimize the loss of ions.
Vice versa, the urine flow rate is low in seawater to
minimize water loss and therefore one of the primary
functions of kidney is to eliminate of divalent ions [58].

droplets and necrosis of the tubule epithelial cells have
been documented in the kidney of fishes exposed to
hydrocarbons [59]. In addition, glomerulus lesions
including dilation of Bowman’s space, hyperplesia and
fibrosis  of  the glomerular rate and thickening of
basement membrane were also reported by many
researchers [60, 62]. Swollen Bowman´s capsule cells and
melanomacrophages were found in the kidney of trout
(Salmo trutta) and tilapia (Oreochromis mossambicus)
exposed to mercuric chloride [63]. Similar alterations were
found in fishes exposed mixed environmental
contaminants [52, 64]. According to these reports the
kidney histopathological alterations, as same as gill, could
not be considered specific to the stressors.

Although the  renal  alterations  can  provide
evidence of toxic affront by themselves but in
combination  with  the  other   organs  pathological
change they could provide stronger indications of
xenobiotic effect [65].

Histopathological Changes of Gastro-intestinal Tract:
The gastro-intestinal tract is one of the main routes for the
uptake of xenobiotics present in the diet or in the water
that the fish inhabit [66, 67]. The effects of toxicant on the
gastro-intestinal tract of fish may range from slight
changes in motility, secretion and absorptive functions to
more severe effects associated with mucosal integrity,
blood flow or neuromuscular control. These effects could
ultimately influence the ability of the organism to thrive
[68]. The main changes reported in gastro-intestinal tract
included hydropic degeneration of the digestive gland
[69], proliferation of mucous cells, hyperaemia, atrophy
and metaplasia. Some studies have indicated that high
levels of some metals in diet may cause increased
apoptosis of intestinal cells [70]. Only a few studies have
documented the histomorphological alterations of
intestine in the fish exposed to heavy metals [67, 71].

Bano and Hasan[72] and Banerjee and Bhattacharya
[67]  demonstrated some alterations in the gut of Channa
punctatus and Heteropneustes fossilis following mercury
intoxication [67, 72]. However, amazingly no
histopathological alterations were observed in Salvelinus
alpinus following exposure to inorganic mercury and
methyl mercury in their feed [73]. Changes of intestinal
epithelium have been reported by different investigators
in the fishes affected by different xenobiotics (petroleum,
chlorinated biphenyl, benzopyrene, terbuthylazine,
cadmium) [36, 66, 74].

However, based on current information, tissues of the
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gastro-intestinal tract do not seem to exhibit lesions which concentration of cadmium [78]. The same results were
may be of value for biological effects monitoring [47].

Histopathological Changes of Skin: The fish skin is
considered as an important organ because it is the
interface between the external and internal environment of
fish. It forms the first line of defense in animal which is in
direct contact with waterborne toxic chemicals, parasites
and disease organisms.

Fish skin is hydrated, unkeratinized and totally
covered by a layer of slimy mucus. Due to the nature of
fish skin, it may be very susceptible to waterborne
chemicals and physical stressors.

Using of fish skin as a target organ or biomarker in
the water quality tests or environmental risk assessments
is not routine yet. In most cases it is difficult to determine
exactly the acute, local dermal toxicity of waterborne
stimulators or scathing chemicals (e.g. metals, detergents,
chlorine, acid, etc.), because other organs (gills in
particular) with more susceptibility are also exposed to
chemicals [47].

Nonetheless, as a result of direct contact of skin with
the environment and many of its important functions, the
skin has received extensive attention in in vitro and in
vivo studies. However, up to the present time, application
of the skin toxicity data is limited.

Architectural abnormalities in the surface epidermal
cells; aboundant mucus secretion; loss of shape, size and
structure of epidermal cells and goblet cells were
observed in Heteropneustes fossilis during 7 days’
sublethal exposure to copper (CuSO4) [75].  Rajan and
Banerjee [76] reported the alterations like significant
decrease in the number of mucous cells of dorsal and
opercular epidermis and rapid breakdown in the mucous
barrier in Heteropneustes fossilis treated with sublethal
concentrations of malachite green [76]. The similar results
were also reported by Lindesjoo and Thulin [77]  in perch
Perca fluviatilis and goldfish Carassius auratus treated
with pulp mill waste.

Destruction of the mucous coat or the underlying
layers (epidermis or dermis) could disturb the integrity of
the fish internal environment, lead to abnormal behavior,
disease or death. Abundant mucus on surface and many
mucous cells near surface; necrotic pavement cells;
mature club cells migrated out, many were newly
differentiated; chloride cells appeared; massive
extravasations of leukocytes; mast cells appeared in the
epidermis and formation of new capillaries; melanosomes
became common, extended into epidermis; erythrocytes in
matrix of dermis were reported by Iger et al. [78] in the
skin of common carp Cyprinus carpio exposed to sulethal

observed in freshwater, air-breathing catfish
Heteropneustes fossilis exposed to ammonium sulfate [79].

CONCLUSION

On the basis of the information presented in different
studies, there is no doubt that the application of
histopathological changes as a biomarker of organism
exposure to contaminated sites, offers important
information that can contribute to environmental
monitoring programs designed for surveillance, hazard
assessment or regulatory compliance.

One of the most important benefits of the use of
histopathological biomarkers in environmental screening
is possibility of examining specific target organs,
including gills, kidney and liver.

However, the fish are responding to the direct effects
of the pollutants as well as to the secondary effects
caused by stress. This information verifies that
histopathological changes are valuable biomarkers for
field evaluation, especially in tropical regions that are
naturally affected by variety of environmental variations.
It should be highlighted that histopathology is able to
assess the initial effects and reactions to acute exposure
to chemical stressors.
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