Fisheries Management of Oreochromis niloticus and Oreochromis aureus Caught by Trammel Nets and Basket Traps in Lake Manzalah, Egypt

El-Azab E.B. El-Bokhty
National Institute of Oceanography and Fisheries, Egypt

Abstract

Cichlid fish species dominating Lake Manzalah (namely Oreochromis niloticus and Oreochromis aureus) were collected by trammel nets and basket traps. Analysis of the length-frequency using (FiSAT) computer program, estimated the Von Bertalanffy's growth parameters as: $L_{8}=22.67 \mathrm{~cm}$ (asymptotic length); $k=1.1$ yearG for O. niloticus; $L_{8}=22.66 \mathrm{~cm} ; k=1.1$ yearG for O. aureus caught by trammel nets where it was found that $L_{8}=18.52 \mathrm{~cm}$ (asymptotic length); $k=1.1$ yearG for O. niloticus and $L_{8}=18.24 \mathrm{~cm} ; k=0.94$ yearG for O. aureus caught by basket traps. The estimated fishing mortalities of O. niloticus were nearly the same (2.54 and 3.05) in cases of trammel nets and basket traps, whereas that of O. aureus was 3.09 for fish caught by basket traps and 3.15 for that caught by trammel nets. The estimated exploitation rates "E" were $0.59,0.64$ for the two species caught by trammel nets and $0.62,0.64$ in respective for the two species caught by basket traps. To obtain the optimum level of exploitation rate, the fishing pressure exerted by these two fishing methods should be reduced to reach the optimum exploitation (0.5) level and the mesh size should be raised specially of the basket traps used. In addition, the usage of larger meshes will affectively reduce the risk of a stock collapse by a long-term increase of the spawning stock size.

Key words: Tilapia \%Fisheries \%Fishing gears \%Lake manzalah \%Egypt

INTRODUCTION

Lake Manzalah is considered as one of the most important sources of inland fishery in Egypt where it is estimated to yield about 38.02% of the northern Nile Delta lakes and is considered as the second major source of fish after Lake Burollus [1]. Importance of the lake fishery returns to to two main targets; as a source of animal protein for human consumption and as a source of employment.

Freshwater fish represent an essential and often irreplaceable source of high quality and cheap, animal protein. Four Cichlid species were identified in Lake Manzalah namely; Oreochromis niloticus, Oreochromis aureus, Sarotherodon galilaeus and Tilapia zillii. The two former species were found to be more abundant than the other two species in most areas of the lake [2].

Various aspects of the biology of Cichlid species have been studied in Egypt [3-9]. There is a considerable exploitation pressure on the different species of tilapia specially O. niloticus \& O. aureus, which dominated the catch taken by the different gears used in the lake. The need for developing the inland fisheries must be
taken into consideration. Information on fishing mortality and exploitation rates exerted by the different fishing methods are essentially required for sustainable management of the lake fishery.

MATERIALS AND METHODS

The trammel net (locally known as El-Daba) and basket traps (locally known as Gawabi) are of the main fishing methods used in lake Manzalah.

Trammel net consists of three layered walls of webbing and are hanged between corked rope and lead line. The two outer walls are made of nylon twines (Td 210/3 or 110/3). The inner wall with smaller mesh sized and slacked net made of nylon twines. The mesh size of both the inner and outer walls depends on the species and the size of the fish to be caught [3]. The average mesh size of the outer layer of the trammel net used in the present study was $6.6 \mathrm{~cm}(\pm 0.430 \mathrm{~cm})$, while that of the inner layer was of $2.8 \mathrm{~cm}(\pm 0.756 \mathrm{~cm})$. Basket trap used in Lake Manzalah is fixed by three iron galvanized iron hoops and stretched by two bambo sticks in a perpendicular plane to the hoops. The trap is supplied
with two cone-shaped entrance mouths which are kept opened by stretching them to the middle hoop by nylon filaments.

The length frequency data of the two cichlid species were seasonally collected from the catch of both trammel nets and basket traps (of different mesh sizes and from different localities) operated on commercial scale in Lake Manzalah during 2006-2007. After sorting the fish sample to the different species, The total length of individual fish was measured to the nearest 0.5 cm and the samples were grouped into 1.0 cm class intervals to estimate the length frequency distributions which were analyzed using the appropriate routines and subroutines of the "FiSAT" computer program [10]. An estimate of the asymptotic length $\left(\mathrm{L}_{4}\right)$ and the growth coefficient (K) were obtained by the method of Wetherall [11]. The parameters were then used as seed values in ELEFAN I routine [12, 13] for estimating the best combination of L_{4} and K .

The instantaneous rate of total mortality (Z) was derived from the length converted catch curve method described by Pauly [14]. The instantaneous rate of natural mortality (M) was computed from the empirical equation of Pauly [12] considering the mean annual temperature of the lake as $20.75^{\circ} \mathrm{C}$ [15]. The instantaneous rate of fishing mortality (F) was extracted as F= Z-M. The exploitation rate was calculated as $\mathrm{E}=\mathrm{F} / \mathrm{Z}$. The length at first capture " L_{c} " was determined from the catch curve according to Pauly [13, 14].

The relative yield per recruit (Y/R) and relative biomass per recruit (B / R) were estimated by using the model of Beverton and Holt modified by Pauly and Soriano [16] and incorporated in the FISAT software package as follows; $(\mathrm{Y} / \mathrm{R})^{\prime}=\mathrm{E} \mathrm{U}^{\mathrm{m} / \mathrm{K}}[1-(3 \mathrm{U} / 1+\mathrm{m})+$ $\left.\left(3 \mathrm{U}^{2} / 1+2 \mathrm{~m}\right)-\left(\mathrm{U}^{3} / 1+3 \mathrm{~m}\right)\right](\mathrm{B} / \mathrm{R})^{\prime}=(\mathrm{Y} / \mathrm{R})^{\prime} / \mathrm{F}$.

RESULTS

The annual fish catch from Lake Manzalah during the period 2000-2006 fluctuated between a maximum catch of 74132 tons in year 2000 and a minimum catch of 39857 tons in 2005 [1]. Tilapia catch fluctuated from 39573 tons in 2000 and 17364 tons in 2005, with an average of 27984.9 tons (Table, 1).

Tilapia formed the majority of fish catch from the lake ($53.38,50.83 \%$) in years 2000 and 2001, respectively. Recently, it showed signs of a decline in the landed catch in the last few years as it contributed only by 42.59 \% in 2006. It was followed by the Catfish Clarias gariepinus (23.3 \%).

Fig. 1: Annual Length frequency of O. niloticus \& O. aureus caught by different trammel nets at Lake Manzalah

Fig. 2: Annual Length frequency of O. niloticus \& O. aureus caught by different basket traps at Lake Manzalah

Table 1: Total catch and Tilapia production from Lake Manzalah during 2000-2006

Year	Total Catch (ton)	Tilapia Catch (ton)
2000	74132	39573
2001	68400	34767
2002	58400	29703
2003	65015	30054
2004	63772	26886
2005	39857	17364
2006	41193	17547

A total number of 4131 fish were collected from the trammel nets catch O. niloticus represented the majority by 52.3 \% of that number. Their total lengths varied between 9.5 cm and 21.5 cm with a modal length of 12.5 cm . The other percentage was represented by O. aureus where its modal length shifted to correspond 13.5 cm (Figure 1). 2778 fish were collected from the catch of basket traps. It was found that O. aureus represented the majority by more than 75% of numerical abundance with a modal length of 9.5 cm , while O. niloticus was represented by about 24% with a modal length of 10.5 cm (Figure 2). Very little proportions of other species were ignored.

Table 2: Mortality and exploitation rates of O. niloticus and O. aureus caught by two different fishing gears in Lake Manzalah

caught by two different fishing gears in Lake Manzalah							
Fishing Method	Species	L_{4}	K	Z	M	F	E
Trammel	O. niloticus	22.67	1.1	4.33	1.79	2.54	0.59
	O. aureus	22.66	1.1	4.94	1.79	3.15	0.64
Basket traps	O. niloticus	18.52	1.1	4.94	1.89	3.05	0.62
	O. aureus	18.24	0.94	4.80	1.72	3.09	0.64

Table 3: Probability of capture of two tilapia species caught by two different fishing methods in Lake manzalah

Method Species	Trammel nets		Basket traps	
	O.niloticus	O. aureus	O.niloticus	O. aureus
L_{25} (cm)	10.70	10.80	8.04	7.85
$\mathrm{L}_{50}(\mathrm{~cm})$	11.45	11.66	8.89	8.60
$\mathrm{L}_{75}(\mathrm{~cm})$	12.27	12.47	9.73	9.38

Table 4: Relative exploitation parameters corresponding to yield per recruit $(\mathrm{Y} / \mathrm{R})$ ' and relative biomass per recruit (B / R) ' for O. niloticus and O. aureus caught by two different nets

Method Species	Trammel nets		Basket traps	
	O.niloticus	O. aureus	O.niloticus	O. aureus
E_{10}	0.66	0.657	0.621	0.621
E_{50}	0.37	0.367	0.357	0.355
$\mathrm{E}_{\text {max }}$	0.75	0.755	0.719	0.723

An estimate of the total mortality coefficients (Z) for O. niloticus were found to be 4.33 yG and 4.94 yG for fish caught by trammel and basket traps respectively. Meanwhile, the natural mortalities of O. niloticus (M) were found as 1.79 yG and 1.89 yG in relation to the two fishing methods.

The fishing mortalities (F) were computed as 2.54 yG and 3.05 yG for O. niloticus caught by trammel and basket traps respectively (Table 2).

The total mortality coefficients (Z) of O. aureus were estimated as 4.94 yG and 4.80 yG for trammel and basket traps respectively. While the natural mortality rates (M) of O. aureus were computed as 1.79 yG and $1.72 \mathrm{yG}^{1}$ for fish caught by trammel and basket traps respectively. Thus; their respective fishing mortality rates were calculated as 3.15 yG and 3.09 yG corresponding to the two fishing methods (Table 2).

The exploitation rates (E) were found to be nearly the same value ($0.59 \& 0.62$) in case of O. niloticus caught by the two fishing methods. While those of O. aureus were of the same value 0.64 for trammel and basket traps (Table 2). Although the trammel nets are known to be selective to a definite fish size according to the mesh size used and the mode of net construction leading to the
effect of entanglment, however this obstacle was overcomed by using different mesh sizes and from the commercial nets used by the fishermen to cover a wider range of the population size strucure and estimation of the different parameters is restricted to the the points which are almost on a straight line on the catch curve.

The length at first capture is strongly correlated with the mesh size of the net used. L_{c} at which 50% of the fish that become vulnerable to capture was estimated to be 11.45 cm and 11.66 cm for O. niloticus and O. aureus, respectively caught by trammel nets, while it was 8.89 cm and 8.60 cm , for the same species respectively caught by basket traps (Table 3).

The selection range fluctuated between 10.7 cm and 12.27 cm total length for O. niloticus caught by trammel nets, while it ranged between 10.8 cm and 12.47 cm for O. aureus caught by the same net. It was found to range between 8.04 and 9.73 cm for O. niloticus, while it recorded 7.85 and 9.38 cm for O. aureus caught by basket traps (Table 3).

As shown at Table 4, the relative yield per recruit and relative biomass per recruit of Oreochromis niloticus and O. aureus were estimated. It was found that the maximum exploitation rates of O. niloticus were 0.61 and 0.72 caught by trammel and basket traps respectively, while their values at 50% unexploited biomass were 0.34 and 0.36 respectively. The maximum rate of exploitation of O. aureus was 0.63 and shifted to 0.72 for both nets, respectively.

The value of exploitation ($\mathrm{E}_{0.1}$) where its slope corresponds to $1 / 10^{\text {th }}$ of the value at the origin of the yield per recruit curve was nearly equal to (0.66) for O. niloticus \& O.aureus caught by trammel nets and were also of the same value (0.62) for those caught by basket traps.

DISCUSSION

As shown from Figure 3, both the total catch and tilapia catch showed a decreasing trend $(\mathrm{r}=-0.8739)$. This decrease may be due to many factors as reduction in lake's area, a progressive increase of eutrophication and pollution of lake water [17] as well as using illegal fishing gears in the lake [2]. A variety of factors are implicated including sea communication problems, reduction of the fresh water supply, over- fishing with a continuing increase of fishing effort units, contributes to fisheries decline [18].

It was found that Oreochromis niloticus and Oreochromis aureus dominated the catch of the seine net (El-Tara), seine/hand catching combination (El-Laffa),

Fig. 3: Annual Total Catch and Tilapia Fish in Lake Manzalah, after GAFRD (2000-20006)
hand catching (Gatis), frame net (El-Gerba), trammel net (El-Daba) according to El-Bokhty [2]. Therefore, it can be concluded that O. niloticus and O. aureus dominated the lake tilapia catch.
Length-Converted Catch Curve (for $Z=4.33 ; M$ (at $20.8 ? C$) $=1.79 ; F=2.54 ; E=0.59$)

> Length-Converted Catch Curve (for $Z=4.94 ; \mathrm{M}$ (at $20.8 ? \mathrm{C})=1.89 ; \mathrm{F}=3.05 ; \mathrm{E}=0.62$)

The total mortality coefficients (Z) for O. niloticus calculated as shown in (Figure $4 \mathrm{a} \& b$) caught by trammel nets and basket traps were higher than those estimated by El-Bokhty [19] as $3.38 y G$ for fish caught by seine net from Lake Manzalah indicating that the species is subjected to high mortality levels.

The natural mortalities of O. niloticus (M) were computed as 2.52 yG and 1.89 yG for fish taken by the two fishing methods which were higher than that recorded by El-Bokhty [19] as 1.04 yG. The fishing mortalities (F) were computed as 2.54 yG and 3.05 yG for O. niloticus caught by trammel and basket traps respectively, whereas it was 2.34 yG for the same species caught by seine net, locally named El-Tara [19]. This difference may be due to the difference in efforts exerted by different fishing gears as well as the difference of mesh sizes of these nets.

Fig. 4a,b: a: Length converted catch curve of O. niloticus caught by trammel nets, Lake Manzalah b: Length converted catch curve of O. niloticus caught by basket traps, Lake Manzalah

Fig. 5a,b: a:Length converted catch curves of O. aureus caught by trammel nets, Lake Manzalah b: Length converted catch curve of O. aureus caught by basket traps, Lake Manzalah

Fig. 6a-d: a: Probability of length at first capture for O. niloticus caught by trammel nets, Lake Manzalah
b: Probability of length at first capture for O. aureus caught by trammel nets, Lake Manzalah
c: Probability of length at first capture for O. niloticus caught by basket traps, Lake Manzalah
d: Probability of length at first capture for O. aureus caught by basket traps, Lake Manzalah

The total mortality coefficients (Z) of O. aureus were estimated as 4.94 yG and 4.8 y G for trammel and basket traps, respectively. These values were found higher than that recorded by El-Bokhty [19] (2.94yG). While the natural mortalities (M) O. aureus were computed as 1.79 yG and 1.72 yG for trammel and basket traps, respectively. Therefore; their respective fishing mortality rates were calculated as 3.15 yG and 3.09 yG corresponding to the two fishing methods. It was recorded by El-Bokhty, [19] that the fishing mortality of O. aureus was $1.73 y G$ caught by seine net. These findings indicate that O. aureus is subjected to the highest fishing mortality rates (Figure $5 \mathrm{a} \& \mathrm{~b}$). Also, it was shown that the the fishing effort and and mesh size greatly affect the fishing mortality [20].

The exploitation rates (E) were found to be nearly the same value (0.60) in case of O. niloticus caught by the two fishing methods. Those of O. aureus attained the same value (0.64). for both nets. Although the trammel nets are known to be selective to a definite fish size
according to the mesh size used and the mode of net construction affecting entanglment, however this obstacle was overcomed by using different mesh sizes and from the commercial nets used by the fishermen to cover a wider range of the population size strucure and estimation of the different parameters is restricted to the the points which are almost on a straight line on the catch curve. According to Gulland [21] the fishing mortality should equal to the natural mortality resulting in a fixed and optimal exploitation rate (0.50) to reach and ensure a sustainable yield. Therefore, it was found that the stock of O. niloticus and O. aureus are overexploited. This agrees with the findings achieved by El-Bokhty [19] for the species caught by seine nets.

Lengths at first capture $\left(\mathrm{L}_{\mathrm{c}}\right)$ at which 50% of the fish become vulnerable to capture were estimated to be 11.45 and 11.66 cm for O. niloticus and O. aureus, respectively by trammel nets, while it was 8.89 and 8.60 cm , for the same species respectively by basket traps (Figure 6, a-d). The differences can be attributed to

Fig. 7a-d: a: Relative yield per recruit (Y/R)' and biomass per recruit (B/R)' of O. niloticus, (trammel nets), Lake Manzalah b: Relative yield per recruit (Y/R)' and biomass per recruit (B/R)' of O. aureus, (trammel nets), Lake Manzalah c: Relative yield per recruit (Y/R)' and biomass per recruit ($\mathrm{B} / \mathrm{R})^{\prime}$ of O. niloticus, (basket traps), Lake Manzalah d: Relative yield per recruit (Y/R)' and biomass per recruit (B/R)' of O. aureus, (basket traps), Lake Manzalah
the differences of mesh sizes of the two fishing nets in the lake. El-Zarka [5] reported that tilapia fish are caught at average length 11 cm . This sizes don't affect the breeding success of the fish because tilapia are known as fractional spawners and reach its first maturity and spawns at this size and even at smaller lengths. Also, Hosny [22] declared that the optimum size at first capture corresponding to the optimal yield in weight per each recruit for the four tilapia species (under the actual fishing and natural mortality rates) would be about 2^{+}year which corresponds to a minimum size limit of 12 cm that would permit one whole season for the spawning process. This would not only prevent recruitment over fishing but will increase the total yield of the lake under the actual levels of the fishing effort.

Hence, L_{c} values are recommended to be raised to at least these minimum lengths by using wider mesh-sized nets for conservation of the stock and also to raise the sustainable yields of the different fish caught by basket traps and trammel nets at Lake Manzalah.

According to the equation $\mathrm{W}=0.01745 \mathrm{~L}^{3.01043}$ recorded by El-Bokhty [19], the total weight by of O. niloticus will be 26.9 gm at 11.45 cm and 12.5 gm at length 8.89 cm caught by trammel nets and basket traps
respectively. Raising these L_{c} values to 15 cm (which nearly corresponds to the optimum length) in total length will make a shift in weight reaching 60.58 gm . Also, applying the equation $\mathrm{W}=0.01332 \mathrm{~L}^{3.0939}$ for O. aureus, an obvious shift in weight would reach 57.97 gm at 15 cm total length instead of 11.5 gm and 10.4 gm at the L_{c} values of O. aureus corresponding to trammel and basket traps respectively. Hence, this could increase the catch of both species caught by such gears based on the criterion of gaining extra-weight and lead to more economic returns. It was highly recommended to use trammel nets with inner layer mesh sizes of 6 cm stretched mesh and basket traps of not less than 5 cm or 2.5 cm mesh bar to achieve this goal [2].

As obvious from Relative yield per recruit (Y/R)' and relative biomass per recruit (B/R)' Figures (7,a-d), the exploitation rates of Oreochromis niloticus and O. aureus should be reduced from 0.60 to 0.35 (nearly 25%) through reducing the effort exerted by both trammel nets and traps to save the stock biomass or at least exploitation rates of the species O. niloticus and O. aureus (nearly 60% and $64 \%)$ should be reduced to the optimum level ($\mathrm{E}=50$) to reach an optimally exploited stock [21]. To get this, the mesh sizes of nets used in basket traps should be increased in parallel with decreasing the effort exerted.

The elastic increase in the overall fishing effort resulted in reducing the CPUE in combination with reduction of mesh sizes in the used gears have led to the over-fishing problem and decline of the fish catch of Lake Manzalah beside the other environmental factors which should be considered. Fisheries management have hitherto targeted limiting gear types and mesh sizes which are difficult to be controlled in such lakes without enforcing laws.

In conclusion, results indicated that the stock of O. niloticus, O. aureus using both trammel nets and basket traps in Lake Manzalah are overexploited. For fishery management of this fishery resource the fishing pressure and the present level of exploitation should be reduced to the optimum level (0.50%). The use of illegal mesh sizes especially of basket traps used in the lake need to be urgently addressed by the authorities concerned and the effort exerted by both of trammel nets and basket traps should be reduced. In addition, the usage of larger meshes will affectively reduces the risk of a stock collapse by a long-term increase of the spawning stock size of tilapia fish and prevents recruitmen overfishing.

ACKNOWLEDGMENT

I am greatly indebted to Prof. Abdou A. Al-Sayes, Prof. of Fishing Gears and Methods, N.I.O.F., for his critical review of the manuscript and useful suggestions.

REFERENCES

1. GAFRD, 2006. The General Authority of Fish Resources Development, Year Book of Fishery Statistics, Cairo, Egypt.
2. El-Bokhty, E.E.B., 2004. Biological and economical studies on some fishing methods used in Lake Manzalah. Ph. D. Thesis, Fac. Sci., Tanta Univ., pp: 264.
3. Al-Sayes, A.A.,1976. Studies on experimental fishing twines and nets and their efficiency and selectivity in fishing operations in Lake Borrollus. Ph.D. Thesis , Fac. Sci. , Alex. Univ., pp: 292.
4. Abd-Alla, A. and K.M. Talaat, 2000. Growth and dynamics of tilapias in Edku Lake, Egypt. Bulletin Institute of Oceanography \& Fisheries, A.R.E., 26: 183-196.
5. El-Zarka, S., A.H. Shaheen and A.A. Aleem, 1970. Tilapia fisheries in Lake Mariut. Age and growth of Tilapia nilotica (L.) in the Lake. Bulletin Institute Oceanography \& Fisheries, Egypt, 1: 149-182.
6. Khalifa, U.S.A., M.Z. Agaypi and H.A.A Dam, 2000. Population dynamics of Oreochromis niloticus L. and Sarotherodon galilaeus Art. 90-97. In: Sustainable Fish Production in Lake Nasser: Ecological Basis and Management Policy. J.F. Craig (ed.) ICLARM Con. Proc., 61: 184.
7. Khallaf, E.A., M. Galal and M. Authman, 2000. The biology of Oreochromis niloticus in a polluted canal. In the International Congress on the Biology of Fish. 20-23 July 2000, University of Aberdeen, Scotland, UK., pp: 17.
8. Khallaf, E.A., 2002. An ecological assessment of Bahr Shebeen Nilotic Canal (A Review Paper, presented at the 9th International Conference, 1-6 September, 2002, Aleppo University, Syria). Journal Union Arab Biolol., 17: 65-75.
9. Shawky, K.A., 1999. Factors affecting the efficiency and selectivity of trammel nets at Manzalah Lake. Ph. D. Thesis, Fac. of Sci. Zagazig Universty.
10. Gayanilo, F.C. Jr., P. Sparre and D. Pauly, 1997. The FAO-ICLARM Stock Assessment Tools (FiSAT). FAO Computerized Information Series (Fisheries). No. 8 Rome, FAO.
11. Wetherall, J.A., 1986. A new method for estimating growth and mortality parameters from lengthfrequency data. ICLARM Fishbyte, 4(1): 12-14.
12. Pauly, D., 1983. Some simple methods for assessment of tropical fish stocks. FAO Fish. Tech. Pap., pp: 234-252.
13. Pauly, D., 1984b. Recent developments in the methodology available for the assessment of exploited fish stocks of reservoirs. In Status of African reservoir fisheries. CIFA Tech. Pap., 10: 326 Ed. By J.M. Kapatasky and T. Petr.
14. Pauly, D., 1984a. Length-converted catch curves. A powerful tool for fisheries research in the tropics. Part 1. ICLARM Fishbyte, 1(2): 9-13.
15. El-Bokhty, E.E.B., 1996. Distribution of bottom fauna in Lake Manzalah in relation to prevailing environmental conditions. M. Sc. Thesis, Fac. Sci., Tanta Univ., pp: 124.
16. Pauly, D. and M.L. Soriano, 1986. Some practical extensions to Beverton and Holt's relative yield-per- recruit model. In The first Asian Fisheries Forum, Eds., J.L. Maclean, L.B. Dizon and L.V. Hosillo, pp: 491-496.
17. Saad, M.A.H., 2003. Impact of diffuse pollution on the socio-economic development opportunities in the coastal Nile Delta Lakes. Diffuse Pollution Conference Dublin.).
18. Kraiem, M.M., L. Chouba, M. Ramdani, M.H. Ahmed, J.R. Thompson and R.J. Flower, 2009. The fish fauna of three North African lagoons: specific inventories, ecological status and production. Hydrobiologia, 622: 133-146.
19. El-Bokhty, E.E.B., 2006. Assessment of family Cichlidae inhabiting Lake Manzala, Egypt. Egyptian J. Aquatic Biology and Fisheries, 10: 85-106.
20. Bethke, E., 2004. A new multi-species model for sustainable exploitation of fish stocks with special regard to cod and flounder fishery in the Baltic Sea. ICES Counc. Meet. Pap., FF06: pp: 22.
21. Gulland, J.A., 1971. The fish resources of the Ocean. West Byfleet, Surrey, Fishing News (Books), Ltd., for FAO, pp: 255.
22. Hosny, C.F.H., A.A. Ezzat and N.M. Dowidar, 1990. The over fishing problem of tilapias in Lake Manzala. Proceeding of International Symposium On Biology And Culture of Tilapias. 27-31 Oct., Alex., Egypt, pp: 190-210.
