Influence of Different Tillage Methods on Weed Population Indices for Sugar Beet Crop

Fereydoun Keshavarzpour

Department of Agriculture, Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

Abstract: Filed experiments were carried out to study the influence of different tillage methods on weed population indices for sugar beet crop during 2008 and 2009 growing seasons. Tillage treatments were moldboard plow + two passes of disk harrow (MDD) as conventional tillage method; moldboard plow + one pass of rotavator (MR), chisel plow + one pass of rotavator (CR) and two passes of disk harrow (DD) as reduced tillage methods; one pass of rotavator (R) and one pass of tine cultivator (C) as minimum tillage methods and no-tillage (NT). Two indices of weed population, i.e. number of weeds and dry mass of weeds per square meters were determined for different tillage treatments. Statistical results of study indicated that although influence of different tillage methods on both indices of weed population was not significant (P = 0.05); tillage operations were useful in decreasing both indices.

Key words: Tillage methods • Weed population indices • Sugar beet • Iran

INTRODUCTION

Weeds compete with the crop plants for nutrients, water and light. Tall weeds that grow on top of the crop plants and shade the crop canopy are very harmful to yield. Conversely, short weeds become very aggressive if allowed to grow uninterrupted when the crop plants are small [1]. Herbicides are important agricultural chemicals used to control weeds in modern farming systems [2, 3]. To reduce the adverse effects of herbicides on the environment and agricultural products, the system of organic agriculture has become popular in the world. This system adopts non-chemical weed control approaches. The main productions of such farms are cereals and vegetables. However, sugar beet is still grown in chemical conditions of intensive farming [4]. In organic farming system the most serious problem is effective weed control due to high weed concurrence in the sugar beet crop. The increase in weed infestation in conventionally tilled soil is the second challenge [5]. Although for most situations, conventional tillage methods have been the main tillage methods for establishing sugar beet since the first part of the 20th century [6], the costs, as well as the environmental concerns have leaded farmers and researchers to adopt conservation tillage methods, i.e. reduced tillage, minimum tillage and no-tillage methods [7]. Conservation tillage methods have been used for sugar beet [4, 8-10]. However, the results of these methods may be contrary [11]. Conservation tillage methods may lead to raised diversity of weed species and population [12, 13] and have a harmful effect on crop yield [14]. But, other studies have confirmed the opposite [15]. In Iran, most of the cultivated area is under conventional tillage methods, and influence of conservation tillage methods on weed population indices for sugar beet crop has not been studied enough. Therefore, the main objective of this study was to study the influence of different tillage methods on weed population indices for sugar beet crop.

MATERIALS AND METHODS

Research Site: This study was conducted at the Research Farms of Hamedan Province, Hamedan, Iran for two successive growing seasons (2008 and 2009). The research site is located at latitude of 34°52’ N, longitude of 48°21’ E and altitude of 1730 m in semi-arid climate (298 mm rainfall annually) in the west of Iran.
Table 1: Soil physical and chemical properties of the experimental site (0-30 cm depth), 2008 and 2009

<table>
<thead>
<tr>
<th>Date</th>
<th>pH</th>
<th>EC (dS m⁻¹)</th>
<th>OC (%)</th>
<th>N (%)</th>
<th>P (ppm)</th>
<th>K (ppm)</th>
<th>Fe (ppm)</th>
<th>Zn (ppm)</th>
<th>Cu (ppm)</th>
<th>Mn (ppm)</th>
<th>B (ppm)</th>
<th>Soil texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>7.9</td>
<td>0.72</td>
<td>0.92</td>
<td>0.09</td>
<td>10.5</td>
<td>280</td>
<td>6.2</td>
<td>0.8</td>
<td>2.3</td>
<td>16.2</td>
<td>0.7</td>
<td>Loam</td>
</tr>
<tr>
<td>2009</td>
<td>8.3</td>
<td>0.55</td>
<td>0.36</td>
<td>0.04</td>
<td>25.6</td>
<td>310</td>
<td>6.4</td>
<td>1.0</td>
<td>2.4</td>
<td>14.4</td>
<td>0.7</td>
<td>Loam</td>
</tr>
</tbody>
</table>

Fig. 1: Mean temperature and monthly rainfall during crop growth (mean of 2008 and 2009)

Mean temperature and monthly rainfall of the experimental site from sowing to harvest during study years (2008 and 2009) are indicated in Fig. 1.

Soil Sampling and Analysis: A composite soil sample (from 21 points) was collected from 0-30 cm depth during the study years and was analyzed in the laboratory for pH, EC, OC, N, P, K, Fe, Zn, Cu, Mn, B and particle size distribution. Details of soil physical and chemical properties of the research site during both years (2008 and 2009) are given in Table 1.

Field Methods: The experiments were laid out in a RCBD with four replications. Tillage treatments were moldboard plow + two passes of disk harrow (MDD) as conventional tillage method; moldboard plow + one pass of rotavator (MR), chisel plow + one pass of rotavator (CR) and two passes of disk harrow (DD) as reduced tillage methods; one pass of rotavator (R) and one pass of tine cultivator (C) as minimum tillage methods and no-tillage (NT). During the study years, tillage treatments were carried out on the same plots. The size of each plot was 20.0 m long and 6.0 m wide. There were 12 rows of sugar beet in each plot with 50-cm row spacing. In both years of study, one of the commercial varieties of sugar beet cv. Zarghan was planted on April 3, 2008 and April 5, 2009 using a 6-row sugar beet drill. Recommended levels of urea (300 kg ha⁻¹) in both years and triple super phosphate (50 kg ha⁻¹) only in the first year of study were used. For all treatments, irrigation scheduling was based on the basis of evaporation from A-class pan installed close to the experimental plots. Also, pest and weed control operations were performed based on general local practices and recommendation. All other essential operations were kept identical for all the treatments.

Observation and Data Collection: At harvest, the dry mass of weeds was evaluated by the weighing method. Five samples were taken at random from each plot using wooden frames 50 cm × 50 cm. The same samples were also used for counting weed plants. The mean results for each plot were recalculated into square meters to determine two indices of weed population, i.e. number of weeds and dry mass of weeds per square meters.

Statistical Analysis: All data were subjected to the Analysis of Variance (ANOVA) following Gomez and Gomez [16] using SAS statistical computer software. Moreover, means of the different treatments were separated by Duncan’s Multiple Range Test (DMRT) at P ≤ 0.05.

RESULTS AND DISCUSSION

In this study, number of weeds and dry mass of weeds per square meters were studied to investigate the influence of different tillage methods on weed population indices for sugar beet crop. Results of ANOVA and means comparison for both indices of weed population among different tillage methods during the years of study (mean of 2008 and 2009) are presented in Table 2 and Table 3, respectively.

Table 2: Analysis of variance for both indices of weed population for sugar beet crop under different tillage methods (mean of 2008 and 2009)

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Df</th>
<th>Number of weeds</th>
<th>Dry mass of weeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>3</td>
<td>7.664 NS</td>
<td>20.92 NS</td>
</tr>
<tr>
<td>Treatment</td>
<td>6</td>
<td>35.96 NS</td>
<td>123.2 NS</td>
</tr>
<tr>
<td>Error</td>
<td>18</td>
<td>7.072</td>
<td>12.65</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td></td>
<td>26.23</td>
<td>28.96</td>
</tr>
</tbody>
</table>

NS = Non-significant
* = Significant at 0.05 probability level
Table 3: Means comparison for both indices of weed population for sugar beet crop between different tillage methods (mean of 2008 and 2009)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Number of weeds (m⁻²)</th>
<th>Dry mass of weeds (g m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD</td>
<td>10.7 a</td>
<td>10.1 a</td>
</tr>
<tr>
<td>MR</td>
<td>6.30 a</td>
<td>6.70 a</td>
</tr>
<tr>
<td>CR</td>
<td>6.70 a</td>
<td>7.20 a</td>
</tr>
<tr>
<td>DD</td>
<td>11.7 a</td>
<td>12.6 a</td>
</tr>
<tr>
<td>R</td>
<td>8.70 a</td>
<td>9.80 a</td>
</tr>
<tr>
<td>C</td>
<td>13.0 a</td>
<td>18.4 a</td>
</tr>
<tr>
<td>NT</td>
<td>14.0 a</td>
<td>21.2 a</td>
</tr>
</tbody>
</table>

Means in the same column with different letters differ significantly at 0.05 probability level according to DMRT.

Statistical results of study indicated that influence of different tillage methods on both indices was not significant ($P < 0.05$). Although there was no significant difference in both indices of weed population for sugar beet crop during the study years, results showed that tillage operations were useful in decreasing both indices. The lowest values of number of weeds (6.30 m⁻²) and dry mass of weeds (6.70 g m⁻²) were recorded in the MR treatment, while the highest values of number of weeds (14.0 m⁻²) and dry mass of weeds (21.2 g m⁻²) were noted in the NT treatment (Table 3). Moreover, tillage method affected both indices of weed population in the order of MR < CR < R < MDD < DD < C < NT. These results are in line with the results reported by Romanekas et al. [4, 8], Adamaviciene et al. [9], Jabro et al. [10], Iqbal et al. [11], Khurshid et al. [17], Rashidi and Keshavarzpour [18], Rashidi et al. [19] and Rashidi and Khabbaz [20] that tillage practices can be associated with superior weed control. These results are also in agreement with those of Carter and Ivany [12], Ozpinar [13], Borresen [14], Bauder et al. [21], Hill [22] and Horne et al. [23] who concluded that conservation tillage methods may be associated with raised diversity of weed species and population.

CONCLUSION

Although influence of different tillage methods on both indices of weed population for sugar beet crop, i.e. number of weeds and dry mass of weeds per square meters was not significant, tillage operations were useful in decreasing both indices.

REFERENCES

