A Short Note on Entropy Ordering Property for Concomitants of Order Statistics

¹Saeid Tahmasebi and ²Javad Behboodian

¹Department of Statistics, Shiraz University, Shiraz 71454, Iran ²Department of Mathematics, Shiraz Islamic Azad University, Shiraz, Iran

Abstract: Let (X_i, Y_i) i = 1, 2, ..., n be a random sample of size n from a continuous bivariate distribution. If the pairs are ordered by their X values, then the Y values associated with the r-th order statistic $X_{(r)}$ of X will be denoted by $Y_{[r]}$, $1 \le r \le n$ and be called the concomitant of the r-th order statistic. In this paper, we present a very short note on entropy ordering for concomitants of order statistics.

Key words: Concomitants • Entropy ordering • Order statistics

INTRODUCTION

Let (X_1, Y_1) , (X_2, Y_2) ,..., (X_n, Y_n) be a random sample of size n from a continuous bivariate distribution. If we arrange the X's in ascending order as $X_{(1)} \leq X_{(2)} \leq ... \leq X_{(n)}$, then the Y's associated with these order statistics are denoted by $Y_{[1]}, Y_{[2]}, ..., Y_{[n]}$ and are called concomitants of order statistics. An excellent review of work on concomitants of order statistics is available in David and Nagaraja [1]. In the following Section, we present some results that relate entropy ordering property for concomitants of order statistics to other well-known ordering of random variables.

Main Results: In this Section, first we briefly review the various notions of stochastic ordering among concomitants of order statistics. So we need the following definitions in which X and Y denote random variables with distributions F_x (x) and G_y (y), density functions f_x (x) and g_y (y) and survival functions \overline{F}_x (x) = $1 - F_x$ (x) and \overline{G}_y (y) = $1 - G_y$ (y).

Definition 2.1: X is said to be smaller than Y according to

- (a) Stochastic ordering (denoted by $X^{\stackrel{\text{df}}{\leq}} Y$) if $\overline{F}_{x}(x) \leq \overline{G}_{Y}(x)$ for all x.
- (b) Entropy ordering (denoted by $X \subseteq Y$) if $H(X) \subseteq H(Y)$.
- (c) Dispersion ordering (denoted by $X \leq Y$) if

$$F_x^{-1}$$
 $(\beta) - F_x^{-1}$ $(\alpha) \le G_y^{-1}$ $(\beta) - G_y^{-1}$ (α) for all $0 < a \le \beta \le 1$.

Definition 2.2: We say that Y is stochastically increasing (decreasing) in X (denoted by SI(Y|X)) (SD(Y|X)) if P(Y > y|X = x) is increasing(decreasing) function in x for all y.

Definition 2.3: A random variable X is said to have a decreasing (an increasing) failure rate (DFR (IFR)) if its failure rate function (increasing) in t > 0. $\lambda_x(t) = \frac{f_x(t)}{1 - F_x(t)}$ is decreasing

Khaledi and Kochar [3] obtained some results of stochastically comparing the concomitant $Y_{[r]}$'s under different kinds of dependence between X and Y. They proved that if Y is stochastically increasing (decreasing) in X, then the concomitant variables $Y_{[r]}$'s are stochastically increasing (decreasing). This result is shown by the following expressions.

(i)
$$SL(Y|X) \Rightarrow Y_{[r]} \stackrel{st}{\leq} Y_{[k]}$$
 for $1 \leq r < k \leq n$,
(ii) $SL(Y|X) \Rightarrow Y_{[r]} \stackrel{st}{\geq} Y_{[k]}$ for $1 \leq r < k \leq n$, (1)

They also proved that if the conditional hazard rate of Y given X = x (λ (y|x)) is decreasing function in x and y, then the concomitants have DFR distributions and are ordered according to dispersive ordering.

Theorem 2.1: Suppose that the conditional hazard rate of Y given X = x (λ (y|x)) is decreasing function in x and y, then for $1 \le r \le k \le n$,

(i)
$$Y_{[k]} \stackrel{\epsilon}{\leq} Y_{[r]}$$
 if $P(Y > y | X = x)$ is increasing function in x for all y ,
(ii) $Y_{[r]} \stackrel{\epsilon}{\leq} Y_{[k]}$ if $P(Y > y | X = x)$ is increasing function in x for all y .

The inequalities in (2) are reversed in the case that $\lambda(y|x)$ is increasing in x and y.

Proof. (i): Using (1), we have

$$SD(Y|X) \Rightarrow Y_{[k]} \stackrel{st}{\leq} Y_{[r]} for \ 1 \leq r \leq k \leq n,$$

Also, since $\lambda(y|x)$ is decreasing function in y for each fixed x, we conclude that $Y_{[r]}$ is DFR for $1 \le r \le n$. Thus,

$$Y_{[k]} \stackrel{\text{if}}{\leq} Y_{[r]} \Leftrightarrow E_{g[k]} \lceil log\vartheta_{[r]}(y) \rceil \geq E\vartheta_{[r]} \lceil log\vartheta_{[r]}(y) \rceil, \tag{3}$$

Now, the discrimination information between $Y_{[k]}$ and $Y_{[r]}$ is

$$K(\mathcal{Q}_{[k]}:\mathcal{Q}_{[r]}) = \int_{-\infty}^{+\infty} \mathcal{Q}_{[k]}(y) \log(\frac{\mathcal{Q}_{[k]}(y)}{\mathcal{Q}_{[r]}(y)}) dy$$

$$= -H(Y_{[k]}) - E_{S[k]} \lceil \log \mathcal{Q}_{[r]}(y) \rceil \ge 0, \tag{4}$$

By Eqs.(3) and (4) the proof is complete.

(ii): The proof is similar to that of part (i), by using the fact that $Y_{[r]} \stackrel{\text{if}}{\leq} Y_{[k]}$.

It is well known that $Y_{[r]} \overset{\text{disp}}{\leq} Y_{[k]} \text{ implies} \quad Y_{[r]} \overset{\text{st}}{\leq} Y_{[k]}$ and obviously $Y_{[r]} \overset{\text{disp}}{\leq} Y_{[k]} \text{ implies that } Y_{[r]} \overset{\text{e}}{\leq} Y_{[k]} \text{ for } 1 \leq r \leq k \leq n.$

Corollary 2.1: Let $Y_{[r]}$ be a concomitant of order statistics having a DFR (IFR) distribution. If $Y_{[r]} \stackrel{\text{if}}{\leq} Y_{[k]}$, then $Y_{[r]} \stackrel{\text{e}}{\leq} Y_{[k]} \left(Y_{[k]} \stackrel{\text{e}}{\leq} Y_{[r]} \right)$ for all $1 \leq r < k \leq n$.

The following example gives an application of theorem 2.1.

Example 2.1: Let (X_i, Y_i) , i = 1, 2, ..., n be a random sample from Gumbel's *bivariate exponential distribution (see Johnson and Kotz* [2], p.261) with density

$$f(x, y) = \exp(-x - y - \theta xy)[(1 + \theta x)(1 + \theta y) - \theta], 0 \le \theta \le 1, x, y > 0.$$
(5)

In this case, the conditional hazard rate of Y given X = x is

$$\lambda (y|x) = \frac{(1+\theta x)(1+\theta y) - \theta}{1+\theta y}, \tag{6}$$

Which increasing in y and x. Since the conditional survival function

$$P(Y > y | X = x) = \exp[-y (1 + \theta x)](1 + \theta y)$$

is decreasing function in x, It follows from theorem 2.1 that $Y_{[r]}$ has IFR distribution and $Y_{[r]} \stackrel{\epsilon}{\leq} Y_{[k]}$ for $1 \leq r \leq k \leq n$.

REFERENCES

- 1. David, H.A. and H.N. Nagaraja, 1998. Concomitants of order statistics. In: Balakrishnan, N and C. R. Rao (Eds.): Handbook of Statistics, 16: 487-513.
- Johnson, N.L. and S. Kotz, 1972. Distribution in Statistics: Continuous Multivariate Distributions, John Wiley, New York.
- 3. Khaledi, B. and S.C. Kochar, 2000. Stochastic Comparisons and Dependence among Concomitants of Order Statistics. J. Multivariate Analysis, 73: 262-281.