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Abstract: In this study we have considered the muzzle exit velocity as our main objective performance. An

adaptive neuro-fuzzy inference system 1s developed to predict the exit muzzle velocity. To assess sunulation
results, a small-scale prototype experiment is designed and constructed where, the simulation results of

theoretical model are m good agreement with results obtained from prototype experument. We used the
approximation property of ANFIS to develop a regulator for muzzle velocity. It has been shown that ANFIS
is a powerful method to model nonlinear and highly varying functions utilizing mathematical property of ANN

mn tuning rule-based fuzzy systems. For the case of this regulator, ANFIS has three mputs: desired velocity of
the muzzle, initial temperature of the drive coils and capacitors and the mass of the projectile and initial voltage

of the capacitors 1s the output. Simulation results showed that the desired muzzle velocity can be reached using

ANFTS to determine the initial voltage of the capacitors.
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INTRODUCTION

The analysis of traveling wave tubular linear
induction motors shows that induction is a feasible
method of producing armature current and that efficient
accelerators can be built without sliding contacts or arcs
and offered the potential for extremely high efficiency,
flexible, hypervelocity electromagnetic accelerators. [1]

Electromagnetic coil actuators
consists of a barrel formed by an array of coils and of a

or accelerators

conductive projectile.  (usually aluminum)[2]. An
accelerating force 1s provided by the mteraction between
the magnetic wave produced by the barrel currents and
the currents induced in the projectile sleeve. The resulting
motion of the projectile is slower than that of the magnetic
wave; the difference is termed the slip speed, as in an
mduction motor. To achieve high efficiency, the swing of
the slip speed is limited by subdividing the barrel into
several sections. In each section, the frequency of the
currents 18 kept constant but increases from one section
to the next, in steps, down the barrel, from the breech to
the muzzle. [3]

This paper deals mainly with performance analysis of
the capacitor driven electromagnetic coil-launchers using
computer simulation. The Mesh-Matrix model and system

equations used for simulation. [4-6]. Temperature effects

on the conductivity of the sleeve and drive coil
resistances and capacitors value are considered in
simulation.

Regulation of Exit Velocity: The exat velocity of projectile
mainly depends on initial stored energy in capacitors or
initial voltage level of capacitors. To reach a given
velocity, required mitial capacitor voltage IV, changes with
initial temperature of drive coils and the mass of projectile.
In consecutive firing, the temperature of drive coils and
capacitor banks rises and initial stored voltage should be
increased to reach the desired velocity. Also, may be it 1s
needed to fill the projectile with some materials such as
highly explosive materials which effects the amount of
iitial stored voltage. In Figure 1 the varnation of versus
given exit velocity m1, in different initial temperature of
drive coils 7, 1s shown. In this simulation the projectile
hasn’t been filled with any material and has its own
weight. As can be seen from this figure, V; increases with
increasing the desired exit velocity and it increases
tremendously in higher initial tem perature.

The variation of I, versus given exit velocity v, in
different mass of the projectile m, when T\= 30°C is
shown in Figure 2. It can be concluded from this
figure that needed mitial voltage V, to reach a given
velocity increases with increasing the mass of projectile.
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This is shown in other form in Figure 3 where the variation
of V, versus m, in different exit velocities is depicted.
Also, the variation of ¥, versusmpT, in different exit
velocities is shown in Figure 4.

Therefore, what is important is determining accurate
amount of initial stored energy in capacitors for a desired
exit velocity in different initial temperature and mass of
projectile. Because the launcher system is a nonlinear and
time varying system, determining a routine regulator such
as classic regulators is difficult and it doesn’t work. To
solve this problem we use two methods to determine
accurate ¥, for a desired exit velocity. In the first method
we used a three dimensional data interpolation (table look
up) to set the value of V. To collect the data for
interpolation, we have simulate the launcher system in
different v;, T, and m, and determine the exact V; to reach
the desired velocity. A data set of 240 simulations has
been produced and has been used for interpolation.

Adaptive Neuro-fuzzy Inference System for Regulation of
Exit Velocity: The method which we used to regulate the
value of ¥, is training an adaptive neuro-fuzzy Inference
system (ANFIS). Neuro-fuzzy systems are fuzzy systems,
which use artificial neural networks (ANNs) theory in
order to determine their properties (fuzzy sets and fuzzy
rules) by processing data samples. Neuro-fuzzy systems
harness the power of the two paradigms: fuzzy logic and
ANNSs, by utilizing the mathematical properties of ANNs
in tuning rule-based fuzzy systems that approximate the
way humans’ process information. A specific approach
in neuro-fuzzy development is the adaptive neuro-fuzzy
inference system (ANFIS), which has shown
significant results in modeling nonlinear functions.
In ANFIS, the membership function parameters are
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Fig. 5: ANFIS architecture

extracted from a data set that describes the system
behavior. The ANFIS learns features in the data set and
adjusts the system parameters according to a given error
criterion [9-10].

Architecture of ANFIS: The ANFIS is a fuzzy Sugeno
model put in the framework of adaptive systems to
facilitate learning and adaptation [9-11]. Such framework
makes the ANFIS modeling more systematic and less
reliant on expert knowledge. To present the ANFIS
architecture, two fuzzy if-then rules based on a first order
Sugeno model are considered:

Rule 1:if (x is 4;) and (v is B)) then (f;=px+qy+r;)
Rule 2: if (x is 4,) and (v is B,) then (f,=px+qy+r;)

Where x and y are the inputs, 4, and B, are the fuzzy
sets, f; are the outputs within the fuzzy region specified by
the fuzzy rule, p,, ¢; and r; are the design parameters that
are determined during the training process. The ANFIS
architecture to implement these two rules is shown in
Figure 5, in which a circle indicates a fixed node, whereas
a square indicates an adaptive node.
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In the first layer, all the nodes are adaptive nodes.
The outputs of layer 1 are the fuzzy membership grade of
the inputs, which are given by

(1)

l_ . (2)
OI - #Bi,z (y), i=3,4

Where p,, and pg_, can adopt any fuzzy membership
function. For example, if the bell shaped membership
function is employed, |, is given by

s 21 5
- [x cl]
aj 3

Where a,, b, and ¢, are the parameters of the membership

B )=

function, goveming the bell shaped functions
accordingly. Tn the second layer, the nodes are fixed
nodes. They are labeled with M, mdicating that they
perform as a simple multiplier. The outputs of this layer

can be represented as:

2 -
Of =wi=p, (D, ()i=1.2 “
‘Which Are the So-called Firing Strengths of the Rules:
In the third layer, the nodes are also fixed nodes. They are
labeled with N, indicating that they play a normalization
role to the firing strengths from the previous layer.
The outputs of this layer can be represented as
Wi

3 —
07 = w; =

i=1,2 (3
W+ W
17 "2

‘Which Are the So-Called Normalized Firing Strengths:
In the fourth layer, the nodes are adaptive nodes. The
output of each node in this layer 1s sunply the product of
the normalized firing strength and a first order polynomial
(for a first order Sugeno model). Thus, the outputs of this

layer are given by

4

Oi:

;ij;_:al(pl_x+ql_y+r1);i: 1,2 (6)
In the fifth layer, there is only one single fixed node
labeled with S. This nede performs the summation of all
mcoming signals. Hence, the overall output of the model
is given by

2 —
2 i vidi @

2

5 2 =
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It can be observed that there are two adaptive layers
in this ANFIS architecture, namely the first layer and the
fourth layer. In the first layer, there are three modifiable
parameters {a, b, ¢}, which are related to the mput
membership functions. These parameters are the so-called
premise parameters. In the fourth layer, there are also
three modifiable parameters {p, ¢, #}, pertaining to the
first order polynomial. These parameters are so-called
consequent parameters [10-11].

Learning Algorithm of ANFIS: The task of the leamning
algorithm for this architecture is to tune all the modifiable
parameters, namely {a, b, ¢tand{p, ¢, r}, to make the
ANFIS output match the training data. When the premise
parameters a, b, and ¢ of the membership function are
fixed, the output of the ANFIS model can be written as

= wi I+ 2 fz (8)

Substituting equation 5 into equation 8 yields

few f v, S, 9

Substituting the fuzzy if-then rules mto equation 9, it
becomes

T W 10

J=w (p1x+q1y+r1)+w2(p2x+q2y+r2) (10)

After rearrangement, the output can be expressed as

F= 0w, 0)p (v ) + 00 r) +(0250p, + (2502 +(w2)n
(11

Which is a linear combination of the modifiable
consequent parameters p,, ¢, ¥, P ¢, and 7,. The least
squares method can be used to identify the optimal
values of these parameters easily. When the premise
parameters are not fixed, the search space becomes larger
and the convergence of the training becomes slower.
A hybnid algorithm combining the least squares method
and the gradient descent method is adopted to solve this
problem. The hybrid algorithm 1s composed of a forward
pass and a backward pass. The least squares method
(forward pass) is used to optimize the consequent
parameters with  the fixed.

premise parameters
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Once the optimal consequent parameters are found,
the backward pass starts mmmediately. The gradient
descent method (backward pass) is used to adjust
optimally the premise parameters comresponding to the
fuzzy sets in the input domain. The output of the ANFIS
15 calculated by employing the comsequent parameters
found 1in the forward pass. The output error 1s used to
adapt the premise parameters by means of a standard
back-propagation algorithm. It has been proven that this
hybrid algorithm is highly efficient in training the ANFTS
[10-11].

Tn this study, the MATLAB function of fuzzy toolbox
anfis 1s used that using a given mput/output data set,
constructs a Sugeno-type fuzzy mference system (FIS)
whose membership function parameters are tuned using
either a back propagation algorithm for nonlinear
parameters in combination with a least squares type of
method for hinear parameters. This allows fuzzy systems
to learn from the data they are modeling. An imtial FIS 1s
used by anfis that provides an initial membership function
for tramming. This initial FIS 1s necessary for constructing
valid FIS structure before starting the training process
and 1s produced by MATLAB function of fuzzy toolbox

genfis2. Given separate sets of input and output data,
genfis2 generates an FIS wusing fuzzy subtractive
clustering. Tt accomplishes this by extracting a set
that models the data behavior. The rule
extraction method consists of determining the number

of rtules

of rules and antecedent membership functions and
then uses linear least squares estimation to determine
each rule’s consequent equations. Consequently, it is
returned an FIS structure that contains a set of fuzzy rules
to cover the feature space. To train the asmfis, input
features are v,, 7, and m, and the output is V.
Propounded ANFIS was trained using 120 pairs of
inputs and outputs and then was checked by another
120 pairs. Trained ANFIS has 62 nodes,
parameters and 42 nonlinear parameters and 7 fuzzy rules

28 linear

are used. In Figure 6 the output of the anfis 1s compared
with 7 checking data.

In Table 1, the performance of two mentioned
regulating methods 1s evaluated wvia three different
simulations. It can be concluded from this table that the
exit velocity m ANFIS method 15 closer to the
predetermined value than in cubic spline interpolation
method.
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Fig. 6: Performance of the anfis. (a) I of checking data and output of the anfis (b) error of the inference system

Table 1: Performance evaluation of ANFIS method and comparison with cubic spline method

Vo V) Exit velocity v, (m/s)
Desired ,, (m/s) m, (gr) I,°C anfis interpolation anfis Interpolation
1 230 152 45 3.89 3.56 230.62 228.27
2 280 132 70 5.06 4.78 280.19 277.51
3 310 172 95 772 7.17 309.79 307.83
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DISCUSSION AND CONCLUSION
An adaptive neuro-fuzzy inference system is
developed to regulate the exit muzzle velocity. To assess
simulation results, a small-scale prototype experiment is
designed and constructed where, the simulation results of
theoretical model are in good agreement with rest results
obtained from prototype experiment.

Equivalent electrical circuit model of the coil-launcher
provides us a very useful and simple approach to study
and analyze them. Mesh matrix model based on the
transient circuit analysis gives the insight of coil-gun
performance. Furthermore, it is easily possible to consider
temperature and frequency effects m this model. So, a
very detailed simulation and analysis is achievable.

Our sunulations for one and multi-section coil
showed that
temperature increasing in drive coils have considerable
effects on the performance of the coil-launcher. Power
loss in drive coils is due to the high value of current

launchers variable parameters and

required to travelling electromagnetic waveforms to be
created in the barrel. But it increases the temperature of
the drive coils and as a result the resistance of the drive
coils increases and causes more power loss. Hence, the
performance of the coil-launcher degrades and muzzle exit
velocity decreases. Power loss in the phase capacitors
and their changes due to the frequency variation, is also
an important factor in degrading the performance. It
should be considered that in a coil-launcher the
performance could be considered energy transfer ratio
(ETR), muzzle exit velocity, kinetic energy of the muzzle or
other factors. In this study we have considered the muzzle
exit velocity as our main objective performance.

We used the approximation property of ANFIS to
develop a regulator for exit muzzle velocity. It has been
shown that ANFIS is a powerful method to model
nonlinear and Thighly varying functions utilizing
mathematical property of ANN in tuning rule-based fuzzy
systems. For the case of this regulator, ANFIS has three
mputs: desired exit velocity of the muzzle, mutial
temperature of the drive coils and the mass of the
projectile and imtial voltage of the capacitors 1s the
output. Simulation results showed that the desired muzzle
exit velocity can be reached using ANFIS to determine the
mnitial voltage of the capacitors.

10.
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