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INTRODUCTION

The nonlinear Schringer's equation (NLSE) in its
dimensionless form has mmportant applications mn Plasma
Physics, Nonlinear Optics, Fluid Dynamics, Mathematical
Biology and various other areas in Physical Sciences and
Engineering [1-15]. In Plasma Physics, it describes the
electron (Langmuir) waves [1, 2]. The NLSE 1s given by

iq!+aq“+b‘q|2 g=0 (1)

where @ and b are constants. Equation (1) 1is
mtegrable by the method of Inverse Scattering Transform
(IST) [4]. The solutions of (1 ) are called solitons. Langmuir
solitons, in the form of cavitons, were observed m 1974.
These cavitons are local regions from which plasma is
ousted by the electromagnetic field. In presence of
strong magnetic field, cavitons in moving plasma were
observed in 1976-77 [1, 4]. Ton acoustic solitons have
been detected earlier in 1970-71 [1, 4]. Equation (1) has
been extensively studied by Wazwaz m the context of
Nonlinear Optics. He integrated this equation in presence
of fourth order dispersion [14,15].

The emission of Langmuir waves m the form of
small-scale localized electrostatic bursts have been
observed directly in waveform data in many space

plasma environments, such as solar wind, auroral region
and polar cap. The comparison of observations in various
space regions has shown that emissions are seen in
assoclations with warm electron fluxes and have common
characteristic properties such as burst-like character, an
irregular structure, amplitude variations and a low
frequency modulation. Langmuir wave bursts occur in
association with electron fluxes with energies 100-400 eV
propagating from distant regions of the magnetosphere
during magnetic disturbances. The results of bicoherence
analysis of wave data have shown that usually the
parametric decay process does not play an important role
in the formation of Langmuir wave bursts. It has been
found that a typical power spectrum width of single burst
is about 10% of the local plasma frequency, which is
larger than the width generated by the thermal effect in
Langmuir dispersion. Moreover, power spectra have
usually a characteristic form with a dent in the upper part.
Power time evolution studies show that these small-scale
bursts tend to be comrelated with the level of the low
frequency wave power. Thus m the framework of the
electron beam-plasma interaction, the presence of the
low frequency turbulence is expected to play a prominent
role m the generation of these plasma oscillations.
The theoretical model mn the quasi-linear statistical
approximation has been developed for beam-plasma

Corresponding Author: Anjan Biswas, Center for Research and Education in Optical Sciences and Applications, Applied
Mathematics Research Center, Department of Applied Mathematics and Theoretical Physics,
Delaware State University, Dover, DE 19901-2277, USA



World Appl. Sci. J., 8 (1): 73-75, 2010

instability in the magnetized plasma in the presence of
low frequency turbulence. It has been shown that the
beat-type waveforms of Langmuir emissions can be
explained by interference between waves excited by an
electron beam and scattering off the density fluctuations.
The frequency width of the burst specttum increases
sufficiently due to the resonant wave scattering providing
the wave power access to phase space regions with low
growth rates [g, 9].

An important property of (1) is that it has infinitely
many ntegrals of motion. The first three of which are
given by [1].
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where N represents the plasmon number, wlule, A 1s
the linear momentum of the soliton and H gives the
Hamiltoman.

Perturbation Terms: The perturbed NLSE that 15 gomg to
be considered in this paper is [4, 7]
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where @ and v are constants. The a -term arises in the
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study of interaction between Langmuir waves and ion

acoustic waves in plasmas, provided the velocity of the

Langmuir waves 1s small as compared to the sound

velocity [2]. The coefficient of v accounts for the

propagation of solitons in plasmas with sharp boundaries
and dissipation.

This term arises in the Gradov-Stenflo equation [1].

In this paper, the focus 1s going to be on obtaining the

localized stationary solution to (5) of the form [5]

gz, )= ()™ (6)

where A is a constant and the function ¢ depends on

the variable x alone. Thus, from (5) and (6), ¢(x) satisfies

the time mdependent inhom ogeneous nonlinear equation
that is given by

AG+af + b =ap’@" v (7
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Mathematical Analysis: Equation (7) has a single lie point
symmetry, namely X = 3@ This symmetry will be used to
integrate equation (7) once. It can be easily seen that the
two mvariants are
u=¢ (8)
and
v=¢ 9
Treating # as the independent variable and v as the
dependent variable, (7) can be rewritten as

av_ Aurhv’
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Integrating (10) yields
vz:ﬁ{bauz+<abfbu+la)fn<m2+vfa)}“’l (11)

where ¢, is an arbitrary constant of integration. Now,
rewriting (11) in terms of the variable ¢ gives

[%fj :ali{ba¢2+(ab—bv+ Aa)In{ad® +v—a)}+q 12)

that leads to the quadrature

%+CQ =I'\/ba¢2 +{ab—bv+ l:)gbln(ﬂﬁf’g +v-a)+a'e, (13)

where ¢; is an arbitrary constant of integration.
CONCLUSIONS

In this paper, the stationary soliton solution is
obtained for relativistic plasmas. Here, the Tie symmetry
approach 1s used to carry out the integration of the NL3E
with Kerr law nonlinearity. The resulting solution is in
quadratures. In future, these results will be generalized to
the case of NLSE with power law nonlinearity.
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