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Abstract: Recently, Kirk and Panyanak proved the KKM mapping principle in R-trees. In this paper, using 
this principle, we establish an R-tree version of famous Fan’s minimax inequality and we apply this result  
to get some fixed point and best approximation theorems. 
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INTRODUCTION 

 
 R-trees, also known as metric trees, were first 
introduced by Tits [1]. The idea has been also studied in 
[2] and was called T-theory. An R-tree is a geodesic 
space for which there is a unique arc joining any two of 
its points and this arc is a metric segment details [3-5]. 
Many applications have been found for R-trees within 
different   fields  of  mathematics  [6]. Moreover there 
are applications in biology and computer science as 
well [7, 8]. 
 The famous Knaster-Kuratowski-Mazurkiewicz 
theorem (in short, KKM theorem) [9] and its 
generalizations have a fundamental importance in 
modern nonlinear analysis. Recently, Kirk and 
Panyanak [5] established the KKM mapping principle 
for R-trees and applied it to prove an extension of Ky 
Fan’s best approximation theorem to upper 
semicontinuous  mappings in this setting. In this paper, 
a minimax  inequality   in  R-trees  is  established  and 
as an application of it, some fixed point and best 
approximation theorems in an R-tree setting are proved.  
 At first some relevant notations and terminologies 
are described. Let X be a metric space and A⊂X, 
henceforth we use Int (A), Bd (A), B (x,r) and convX 
(A)  respectively to denote the interior of A, boundary 
of A, closed ball centered at x with radius  
r≥0 and the intersection of all closed convex subsets of 
X that contain A. 
 Let X and Y be two topological Hausdorff spaces 
and T: X→Y be a multivalued function with nonempty 
values if  
 

1T (B): {x X:T(x) B }− = ∈ ∩ ≠ φ  
 
then T is said to be: 

• Upper semicontinuous, if for each closed set 
1B Y, T (B) Y−⊂ ⊂  is closed in X 

• Lower semicontinuous, if for each open set 
1B Y, T (B)−⊂  is open in X 

• Continuous, if it is both upper and lower 
semicontinuous. 

 
Definition 1: An R-tree is a metric space X such that: 
 
• There is  a unique geodesic segment denoted by 

[x,y] joining each pair of points x,y∈X. 
• If [y,x] [x,z] {x},=∩  then [y,x] [x,z] [y,z].=∪  
• If x,y,z∈X then [x,y] [x,z] [x,w]=∩  for some 

w∈X. 
 
 This notion was introduced in [1]. Standard 
examples of R-trees include the radial and river metrics 
on ℜ2. Much more subtle examples exist; e.g. the real 
tree in [10]. 
 
Definition 2: Let X be an R-tree, C be a closed convex 
subset of X. A function f: C→ℜ is said to be metrically 
quasi-concave   (resp.,   metrically   quasi-convex)   if 
for each λ∈ℜ, the set {x C: f (x ) }∈ ≥ λ  (resp., 
{x C: f (x ) }∈ ≤ λ ) is closed and convex. 
 
Definition 3: Let C be a nonempty subset of an R-tree 
X. A multivalued mapping G:C→2X is said to be a 
KKM mapping if for each nonempty finite set F⊂C,  
 

X x Fconv (F) G(x)∈⊆ ∪  

 
 This notion was introduced in [5], in which the 
following important result is established.  
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Theorem 1. (KKM mapping principle): Suppose C is 
a closed convex subset of a complete R-tree X and 
G:C→2X has nonempty closed values. If G is a KKM 
mapping then {G(x)}X∈C has a finite intersection 
property. Moreover, if C is geodesically bounded, then  
 

G(x) .x C ≠ φ∈∩  

 
MAIN RESULTS 

 
 We first establish the following lemma in order to 
prove our main results. 
 
Lemma 1: Let C be a closed convex subset of an R-tree 
X and suppose f: C×C→ℜ satisfies: 
 
• For each y∈C, the function f (.,y): C→ℜ is 

metrically quasi-concave (resp., metrically quasi-
convex),  

• There exists γ∈ℜ  such that f(x,x)≤γ ( resp., f(x,x)≥ 
γ) for each x∈C, 

 
Then the mapping G:C→2X which is defined by: 
 
G(x) {y C:f (x ,y ) }(resp.,G(x) {y C:f (x ,y ) })= ∈ ≤ γ = ∈ ≥ γ  

 
is a KKM mapping.  
 
Proof: The conclusion is proved for the concave case; 
the convex case is completely similar. On the contrary 
assume that G is not a KKM mapping. Suppose that 
there exists a finite subset F = {x1,…,xn} of C and a 
point x0∈convX(F)  such that x0∉G(xi)  for each i = 
1,…,n . Then we have f(xi,x0)>γ  for each i. By setting 
 

min{f(x ,x ) : i 1,...,n}0iλ = = > γ  

and 
0A {z C : f ( z , x ) }= ∈ ≥ λ  

 
for each i, xi∈A. According to hypothesis 1, A is closed 
and convex and hence 0 Xx conv (F) A∈ ⊂ . Therefore 

0 0f ( x , x )≥ λ > γ , this is a contradiction to hypothesis 2. 

Thus G is a KKM mapping. 
 The following is an R-tree version of the Fan’s 
minimax inequality [11]. 
 
Theorem 1: Suppose C is a closed convex geodesically 
bounded subset of a complete R-tree X and f: C×C→ℜ 
satisfies: 
 
• For each x∈C, the function f(x,.):C→ℜ is lower 

semicontinuous (resp., upper semicontinuous);  

 
• For each y∈C, the function f(.,y):C→ℜ is 

metrically quasi-concave (resp., metrically quasi-
convex);  

• There exists γ∈ℜ  such that f(x,.x)≤γ  (resp., 
f(x,.x)≥ γ) for each x∈C. 

 
 Then there exists a y0∈C such that f(x,y0x)≤γ 
(resp., f(x,y0)≥γ) for all x∈C and hence  
 

x C 0 x Csup f ( x , y ) sup f(x,x)∈ ∈≤  
(resp., x C 0 x Cinf f ( x , y ) inf f(x,x)∈ ∈≥ ). 

 
Proof: By hypothesis 3, x Csup f(x,x)∈λ = < ∞ . For each 

x∈C, define the mapping G:C→2X by:  
 

G(x) {y C:f (x ,y ) }.= ∈ ≤ λ  
 
which is closed by hypothesis 1. By Lemma 1, G is a 
KKM mapping. Since C is a closed convex and 
geodesically bounded, by using of the KKM mapping 
principle, x C G(x)∈ ≠ φ∩  

 Therefore there exists a y0  in this intersection. 
Thus f(x,y0)≤λ for all x∈C and hence  
 

x C 0 x Csup f ( x , y ) sup f(x,x)∈ ∈≤  
 
 Now as an application of minimax inequality in R-
trees, we prove some fixed point and best 
approximation theorems. The following result is an 
extension of Fan’s best approximation theorem to lower 
semicontinuous multivalued mappings in an R-tree 
setting. Note that we use c(X)  to denote all closed 
convex subsets of X.  
 
Theorem 2: Suppose X is a complete R-tree, C is a 
closed convex geodesically bounded subset of X and 
T:C→c(X) is lower semicontinuous. Then there exists a 
y0∈C such that  
 

0 0 x C 0d(y , T ( y ) ) inf d(x,T(y )).∈=  
 
Moreover, if y0∉T(y0) then y0∈Bd(C).  
 
Proof: Define the mapping f:C×C→ℜ by  
 

f(x,y) d(y,Ty) d(x,Ty),     x,y C.= − ∀ ∈  
 
 It is proved that f satisfies the hypotheses in 
Theorem 1. Obviously, f(x,.)  is lower semicontinuous. 
For each y∈C and λ∈ℜ, let  
 
A {x C:d(y,Ty) d(x,Ty) } {x C:d(x,Ty) },= ∈ − ≥ λ = ∈ ≤ γ  
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Where d(y,Ty) .γ = − λ   
 Since C is a subtree of X and Ty is closed and 
convex, A is also closed and convex. Hence f(.,y) is 
metrically quasi-concave. 
 Obviously f(x,x) = 0 for all x∈C. Therefore by 
Theorem 1, there exists y0∈C such that  
 
              0 0 0d(y , T y ) d(x,Ty ),         x C≤ ∀ ∈  (i)  
 
which implies that  
 

0 0 x C 0d(y , T ( y ) ) inf d(x,T(y )).∈=  
 
 Suppose y0∉T(y0) and 0 0d(y , T ( y ) ) r 0= > . We 

prove  that  y0∉Bd(C).   On   the   contrary   assume  
that  y0∉Int(C);  then    there   exists  an  ε∈(0,r)   such 
that 0B(y , ) C.ε ⊂  Take 0 0z Ty∈  such that 

0 0d(y , z ) r / 2< + ε . By metric convexity of X, take 

0 0 0x [y , z ]∈  
 Such that 0 0d(y , x ) / 2= ε . Since X is an R-tree, we 

have  
 

0 0 0 0 0 0 0 0

0 0

d(x , T y ) d(x ,z ) d(y ,z ) d(y ,x ) r
d(y ,Ty ), 

≤ = − <
=

 

 
which contradicts (i). Therefore y0∈Bd(C). 
 
Corollary 1: Let X,C,T be the same as Theorem 2. If 
Tx∩C≠φ for all x∈Bd(C), then T has a fixed point. 
 
Proof: On the contrary assume that T doesn’t have a 
fixed point. Therefore by Theorem 2 there exists an 
y0∈Bd(C) such that  
 
            0 0 00 d(y , T y ) d(x,Ty ),         x C< ≤ ∀ ∈  (ii) 

 
 Since y0∈Bd(C), we have Ty0∩C≠φ. Thus by (ii) 
we get d(y0,Ty0) = 0, which is a contradiction.  
 If  in  Theorem  2, T is single valued then it 
reduces to the following analog of Fan’s best 
approximation   theorem   to   point  valued  mappings 
in  geodesically   bounded  R-trees   which  was  proved 
in [4] (Theorem 3.6.). 
 
Corollary 2: Suppose X is a complete R-tree, C is a 
closed  convex   geodesically  bounded  subset  of  X 
and T:C→X is continuous. Then there exists an y0∈C 
such that 
 

0 0 0d(y , T y ) d(x,Ty ),         x C≤ ∀ ∈  
 
 The following is an analog of Fan’s fixed point 
theorem [12] in R-trees. 

 
Theorem 3: Suppose X is a complete R-tree, C is a 
closed convex geodesically bounded subset of X and 
T:C→X is continuous and for every c∈X  with c≠T(c),  
 

(c,T(c)]: [c,T(c)]\{c}=  
 
contains at least one point of C, then T has a fixed 
point.  
 
Proof: By the Corollary 2, there exists y0∈C such that  
 
               0 0 0d(y , T y ) d(x,Ty ),          x C≤ ∀ ∈  (iii) 
 
 We claim that y0 is a fixed point of T. On the 
contrary assume that y0≠Ty0. Then by assumption there 
exists a z∈C  such that ]0 0z (y ,Ty∈ . Therefore  

 
0 0 0 0 0 0d(z,Ty ) d(y , T y ) d(y , z ) d(y , T y ) ,= − <  

 
which is a contradiction to (iii). 
 Note that if T(C)⊂C, then the hypothesis of 
Theorem 3 is satisfied. Therefore as an immediate 
consequence, we obtain the following fixed point 
theorem which is due to Kirk ([4], Theorem 3.4.), by 
different method; however it is also a direct 
consequence of Theorem 2.  
 
Corollary 3: Suppose X is a geodesically bounded 
complete R-tree. Then every continuous mapping 
T:X→X has a fixed point.  
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