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Comparison of New Aitken Type Method of N. IDE
with Several Methods Solving Nonlinear Algebraic Equations
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Abstract: Finding the roots of nonlinear algebraic equations is an important problem in science and
engineering. Many mathematical models in physics, engineering and applied science, are applied with nonlinear
equations. later many methods developed for solving nonlinear equations. The efficient methods to find the
roots of nonlinear equations has been developed by a large number of researchers. In this paper we present
the comparison of one important numerical methods given by N. Ide, Starting by King’s method, which
proposed a modified families of fourth- and eighth-order of convergence iterative methods for nonlinear
equations. Finally we verified on a number of examples and numerical results obtained the efficiency of the

methodgiven by N. Ide.
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INTRODUCTION

Find a solution of the equation f(x)=0, where f(x) is
nonlinear function is an important problem in mathematics
[1-58]. The well-known method is a Newton’s iterative
method defined by (1):

Xn+l:Xn _M (1)
S ()

New Aitken type Method of N. IDE: This method given in
[18] by the scheme,
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where [y,, z,; f] denotes the first order divided difference
of fonx andy.

Algorithm of the New Aitken Type Method of N. IDE:

*  Give X, initial value (number real), give the tolerance
number O (for stopping) and take y= X,.

+  Calculus of x, =, _S(x)

S '(x0)
* Calculus (forn > 1):
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f'(\/xn—l-yn—l)
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Calculus of stopping condition: if

Xn+l —Xn
X

< then stop, else,

n+l

Take n=n+1 and return to (3).

Several Methods for Comparison: We start by King’s
method of order four denoted K4 [1], [42] given by:

A C)
TG
0 S(x,) 9)
Xn+1 = Vn f,(x”)

S )+ (B=2)f ()
F)+Bf ()

where, £(y,)= f'(x).

The Modified King's Method MK4: We call this family [1],
modified King’s method MK4. The order of convergence
of this family is four, Kung and Traub[1], [42] give the
schema of this method by (10),

S
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The MK4 method given by (10) is four-order of
convergence.

Modified King's Method: Modified King’s method [1]
denoted by MK8a and MK8b, given by the forms (11) and

(12).
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where,
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Numerical Examples: To show the efficiency of the
comparison, we compare the New Aitken type Method of
N. IDE denoted by NANI [18] with the methods given by
schemes K4, MK4, MK8a and MKS8b, five examples will be
tested. We compare with K4 presented by King [40] and
with the derivative-free fourth- and eighthordermethods
presented by Yasmin et al. [57], Cordero et al. [36]; and
Zafar et al. [58] denoted respectively by YZA4, YZAS,
CHMT4, CHMTS8 and ZYAJ4, ZYAJS.

Examples:
Example I: For the function f; = cos(x) —x; x,= 0

Table 1 give the Comparisons between different
methods with the method of New Aitken type Method of
N. IDE.

Example 2: For the function f, = sin* (x) —x* + 1;x,= 1
Table 2 give the Comparisons between different

methods with the method of New Aitken type Method of
N. IDE.
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Table 1: Comparison of the methos for the function f; = cos (x) — x; x = 0

Method ~ Number of Iteration n X, x)l
MK4 4 0.73908513321516064  1.75E-209
K4 4 0.73908513321516064  9.03E-71
YZA4 4 0.73908513321516064  1.60E-128
CHMT4 4 0.73908513321516064  1.49E-207
ZYAJ4 4 0.73908513321516064  0.02E-224
MKS8a 3 0.73908513321516064  4.94E-441
MKS8b 3 0.73908513321516064  5.03E-466
YZAS 3 0.73908513321516064  9.51E-223
CHMT8 3 0.73908513321516064  5.73E-465
ZYAJS 3 0.73908513321516064  5.41E-455
NANI 5 0.73908513321516064  1.70E-208

Table 2: Comparison of the methos for the function f; = sin® (x) — x* + 1;

xo=1

Method  Number of Iteration n X, x|
MK4 4 1.4044916482153412 2.69E-176
K4 5 1.4044916482153412 2.19E-68
YZA4 4 1.4044916482153412 1.90E-90
CHMT4 4 1.4044916482153412 4.63E-107
ZYAJ4 4 1.4044916482153412 8.16E-139
MKS8a 3 1.4044916482153412 1.44E-333
MKS8b 3 1.4044916482153412 2.42E-359
YZA8 3 1.4044916482153412 4.00E-240
CHMTS8 3 1.4044916482153412 4.26E-235
ZYAJ8 3 1.4044916482153412 8.38E-307
NANI 5 1.4044916482153412 2.16E-163

Table 3: Comparison of the methos for the function In (x*> — x + 1) — 4sin
(x=1);x=1.5

Method  Number of Iteration n X, x|
MK4 3 1 4.80E-62
K4 4 3.5302670187568383 5.73E-162
YZA4 4 1 2.30E-147
CHMT4 4 1 4.75E-197
ZYAJ4 4 1 3.22E-213
MKS8a 3 1 3.75E-430
MKS8b 3 1 3.14E-452
YZAS8 3 1 1.75E-419
CHMTS8 3 1 2.04E-388
ZYAJ8 3 1 2.39E-394
NANI 5 1 1.20E-179

Example 3: For the function f; = In (x** — x+ 1) —4sin

x=1);x,=15

Table 3 give the Comparisons between different
methods with the method of New Aitken type Method of
N. IDE.

Example 4: For the function f, = e™ + cos(x) —x% x, = 1
Table 4 give the Comparisons between different

methods with the method of New Aitken type Method of
N. IDE.
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Table 4: Comparison of the methos for the function f; = e + cos(x) — x%;

xo=1

Method  Number of Iteration n X, x|
MK4 3 0.97416230520054071 8.46E-128
K4 3 0.97416230520054071 1.34E-121
YZA4 3 0.97416230520054071 4.16E-102
CHMT4 3 0.97416230520054071 9.65E-109
ZYAJ4 3 0.97416230520054071 1.11E-111
MKS8a 3 0.97416230520054071 1.93E-941
MKS8b 2 0.97416230520054071 2.58E-126
YZA8 3 0.97416230520054071 2.18E-851
CHMTS 3 0.97416230520054071 1.06E-892
ZYAJ8 3 0.97416230520054071 2.54E-886
NANI 4 0.97416230520054070 15.98E-207

Table 5: Comparison of the methos for the function f; = aectan(x) — x> + 1;

Xo=1
Method  Number of Iteration n X, [fx)l
MK4 3 1.3961536566409308 2.18E-90
K4 3 1.3961536566409308 2.16E-71
YZA4 4 1.3961536566409308 8.75E-232
CHMT4 3 1.3961536566409308 2.25E-68
ZYAJ4 3 1.3961536566409308 2.48E-74
MKg8a 3 1.3961536566409308 3.52E-654
MKS8b 3 1.3961536566409308 1:65E_707
YZA8 3 1.3961536566409308 3.19E-509
CHMT3 3 1.3961536566409308 1.89E-560
ZYAIJ8 3 1.3961536566409308 5.71E-598
NANI 4 1.3961536566409307 51.62E-204

Example 5: For the function f; = aectan(x) — x> + 1; x, = 1

Table 5 give the Comparisons between different
methods with the method of New Aitken type Method of
N. IDE.

CONCLUSION

In this work we compared the method of New Aitken
type Method of N. IDE. By the proposed new optimal
three derivative-freeroot finding schemes for nonlinear
equations [1], these methods given by schemes K4, MK4,
MKS8a and MKS8D, five examples tested. We compared
with K4 presented by King [40] and with the
derivative-free fourth- and eighth ordermethods presented
by Yasmin et al. [57], Cordero et al. [36]; and Zafar et al.
[58] denoted respectively as: YZA4, YZA8, CHMT4,
CHMTS8 and ZYAJ4, ZYAJS.. We show the efficiency of
this method.
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