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Decomposition Method for Fractional Partial Differential
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Abstract: In this research, an effective combination of the result of fractional partial differential equations
(PDEs) is envisioned. Decomposition coupled with modified integral transform (Elzaki transform) is applied to
solve partial differential equations, of a fractional order. It is observed that the proposed technique is extremely
useful. The effects of the proposed scheme are highly encouraging and efficient.
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INTRODUCTION appropriate solutions to multi-dimensional wave, Burger’s

During the last years, many researchers found that
the derivatives of non-integer order are very suited  for Definition and Derivations the ELzaki Transform of
the  description  of  various  physical  phenomena  such Derivatives: ELzaki transform of the function f(t) is
as dumping laws, diffusion process, etc. These findings defined as;
raised the growing interest of studies of fractional
calculus in several areas such as natural philosophy,
alchemy and technology. For these causes, we require
honest and effective techniques for the solution of
fractional differential equations [1-9, 11, 13, 14]. Most To obtain the ELzaki transform of partial derivatives
fractional differential equations do not take an exact we use integration by parts as follows: 
analytic solution, therefore approximation and numerical
techniques must be employed. In the last decades,
various methods have been employed to solve fractional
differential equations, fractional partial differential
equations, fractional integro-differential equations [2, 6,
10, 12, 15] and dynamic systems containing fractional
derivatives,  such  as  ottomans  decomposition  method
[2, 610, 12, 15], He's a variational iteration method [12],
Homotopy perturbation method [9, 16]. Laplace transform
method [1, 4, 5]. In this article, we use the decomposition we assume that f is piecewise continuous and is of
method coupled with Elzakitrans form [17-20] to construct exponential order.

and Klein-Gordon equations of fractional order.
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Right away

Then we get: 

Similarly, we can recoup:

Let us take  then we have:

We can well extend this result to the n  partialth

derivative by using mathematical induction,

See [14, 15, 16] for more details and examples.

Analysis of the Proposed Scheme: To illustrate the basic
idea of the proposed method we study a general nonlinear
non homogeneous fractional partial differential equation
with initial conditions at the origin:

(1)

(2)

where g(x, t) is the source  term,  N  representsan on
linear operator and R is a linear  differential  operator,
where  h(x),  f(x)  are  algebraic  functions  and D u(x, t)t

is the Caputo fractional derivative of the function u(x, t)
which is definite by,

(3)

Elzakitrans form of the Caputo operatoris,

(4)

Taking Elzaki transform of Equation (1) results in:

(5)

Use the property of Elzaki transform, toget:

(6)

Operating with Elzaki inverseon both sides of
Equation (6) gives:

(7)

Where G(x, t) represents the term arising from the source
term and the prescribed in initial conditions. Using
Adomians Decomposition Method (ADM) to get out the
nonlinear terms, then the solution will be in the following
form:

(8)

Numerical Applications: We gave the suggested method
to engender to the effect of the fractional partial
differential equation (PDEs). Numerical results obtained
from the proposed system are advanced. To match the
efficiency, few examples are brought in:

Example 1: Look at the following one-dimensional linear
fractional wave equation:

(9)

Subject to the initial condition, 

u (x, 0) = 0

Applying Elzaki transform onequation (9) results in, 
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Using the Adomian decomposition method, we have,

Then we get, 

And so the solution in series configuration is presented in the form, 

Striking down the noise terms and holding open the non-noise terms yield the accurate result of equation (9), in the
form,

u(x, t) = t sin x

Example 2: Consider the following one-dimensional linear fractional Burger's equation:

(10)

subject to initial condition, 

Applying Elzaki transform on both sides of equation (10) results in, 
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By using the Adomian decomposition method, we receive the following recurrence relation, 

And then we give up, 

And then the series solution will be given as follows, 

Coming down the noise terms, to see the exact solution in the physical body,

Example 3: Let’s look at the  following one-dimensional linear fractional Klein-Golden equation:

(11)

subject to the initial conditions, 

Applying Elzaki transform on both sides of equation (11), to get, 
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Fig. 1: (a), Approximate solution, (b), Exact solution

Fig. 2: (a):Approximate solution, (b):Exact solution

Fig. 3: (a), Approximate solution, (b), Exact solution
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By using the Adomian decomposition method, we receive the following recurrence relation, 

Accordingly,

Then, after coming down the noise terms, the closed form solution for  = 2, is given as.

CONCLUSIONS 5. Jumarie, G., 2009. Laplace’s transform of fractional

Elzaki transform method is used to find appropriate
resolutions of some one-dimensional wave equation:
Burger’s and Klein-Gordon fractional equations. It may be
concluded that the proposed technique is very powerful
and effective in  finding analytic  approximate solutions
for a large class of partial differential equations of the
fractional order. Numerical results explicitly reveal the
utter reliability and efficiency of the proposed method.

REFERENCES

1. Duan, J.S. and M.Y. Xu, 2004. The problem for
fractional diffusion-wave equations on finite interval
and Laplace transform. Appl. Math. J. Chin. Univ.
Ser. A. 19(2):165-171. 

2. Gejji, V.D. and H. Jafari, 2007. Solving a multi-order
fractional differential equation. Appl. Math. Comput.,
189: 541-548. 

3. Hosseini, M.M., S.T. Mohyud-Din and A. Nakhaeei,
2011. New Rothe-Wavelet 7378 Int. J. Phys. Sci.
method for solving telegraph equations. Int. J. Syst.
Sci. In Press. 

4. Jumarie, G., 2006. New stochastic fractional models
for Malthusian growth, the Poissonian birth process
and optimal management of populations. Math.
Comput. Model., 44: 231-254.

order via the Mittag- Leffler function and modified
Riemann-Liouville  derivative.   Appl.   Math.  Lett.,
22: 1659-1664. 

6. Khan, Y. and N. Faraz, 2011. Modified fractional
decomposition method having integral (d ) , J.
King. Saud. Uni. Sci., 23: 157-161. 

7. Miller, K.S and B. Ross, 1993. An Introduction to the
Fractional Calculus and Fractional Differential
Equations. Wiley, New York, pp: 384. 

8. Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Some relatively new techniques for nonlinear
problems, Mathematical Problems in Engineering,
Hindaw, 10: 1155-1180. 

9. Mohyud-Din, S.T., M.A. Noor and K.I. Noor, 2009.
Traveling wave solutions of seventh-order
generalized KdV equation using He’s polynomials.
Int. J. Nonlinear. Sci. Numer. Simul., 10: 227-233. 

10. Momani, S. and M.A. Noor, 2006. Numerical methods
for fourth-order fractional integro-differential
equations. Appl. Math. Comput., 182: 754-760. 

11. Momani,  S.  and  Z. Odibat, 2006. Analytical
approach to linear fractional partial differential
equations arising in fluid mechanics. Phys. Lett. A.,
355: 271-279. 

12. Momani, S. and N.T. Shawagfeh, 2006.
Decomposition  method  for  solving  fractional
Riccati differential equations. Appl. Math. Comput.,
182: 1083-1092.



World Appl. Sci. J., 37 (1): 18-24, 2019

24

13. Oldham, K.B. and J. Spanier, 1974. The Fractional 18. Tarig M.  Elzaki and J. Biazar, 2013. Homotopy
Calculus. Academic Press, New York, pp: 234. Perturbation Method and Elzaki Transform for

14. Podlubny, I., 1999. Fractional Differential Equations. Solving System of Nonlinear Partial Differential
Academic Press, San Diego, pp: 368. Equations, World Applied Sciences Journal, (2013).

15. Ray, S.S., K.S. Chaudhuri and R.K. Bera, 2006. DOI: 10.5829/idosi.wasj.2013.24.07.1041.
Analytical approximate solution of nonlinear dynamic 19. Tarig Elzaki, M., 2014. Application of Projected
system containing fractional derivative by modified Differential Transform Method on Nonlinear Partial
decomposition   method.   Appl.   Math.  Comput., Differential Equations with Proportional Delay in One
182: 544-552. Variable, World Applied Sciences Journal, (2014).

16. Sweilam, N.H., M.M. Khader and R.F. Al-Bar, 2007. DOI: 10.5829/idosi.wasj.2014.30.03.1841.
Numerical studies for a multi-order fractional
differential equation. Phys. Lett. A., 371: 26-33.

17. Eman Hilal1 M.A. and M. Tarig, 2014. Elzaki, Solution
of Nonlinear Partial Differential Equations by New
Laplace Variational Iteration Method, Journal of
Function Spaces, Volume 2014, pp: 1-5,
http://dx.doi.org/10.1155/2014/790714.


