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Rashad M. EL-Sagheer

Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt

Abstract: This article deals with the statistical inference for a step-stress partially accelerated life tests with two
stress levels under progressive type-II censoring. The lifetime of the test units is assumed to follow
distributions having power hazard function (DPHF). The maximum likelihood (ML), Bayes and parametric
bootstrap methods are used for estimating unknown parameters of DPHF and the acceleration factor. Based
on normal approximation to the asymptotic distribution of MLEs, the approximate confidence intervals for the
parameters and the acceleration factor are derived. In addition, two bootstrap confidence intervals are also
proposed. The classical Bayes estimates cannot be obtained in explicit form, so we propose to apply the
Markov chain Monte Carlo (MCMC) method to tackle this problem, which allows us to construct the credible
interval of the involved parameters. Finally, analysis of a simulated data set has also been presented to illustrate
the proposed estimation methods.
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INTRODUCTION performance under normal use. Thus, PALT is used for

Due to the continual improvement in the ordinary life tests. PALT can be carried out using
manufacturing design, it is more difficult to obtain constant-stress, step-stress, or progressive-stress.
information about the lifetime of products or materials According to Nelson [1] and Rao [2], the common
with high reliability at the time of testing under normal methods  are  step-stress  and constant-stress. Under
conditions. These make the lifetime testing under normal step-stress PALT (SSPALT), a test units first run at
conditions very costly and take a long time. For this normal (use) condition and, if it does not fail for a
reason, accelerated life test (ALT) and partially specified time, then it is run at accelerated condition until
accelerated life test (PALT) the most common approaches the test terminates. But the constant-stress PALT runs
that are used in order to obtain failures quickly, in a short each unit at either use condition or accelerated condition
period of time. Accelerated life testing is achieved by only, i.e. each unit is run at a constant-stress level until it
subjecting the test units to conditions that are more fails or censors. Several authors have dealt with this type
severe than the normal ones, such as higher levels of of PALT, including DeGroot and Goel [3], Bai and Chung
temperature,  voltage,  pressure,  vibration,  load,  etc. [4], Ismail [5], Abdel-Hamid and Al-Hussaini [6], Bai et al.
Units are tested at high stress levels to induce early [7], Abdel-Ghani [8], Abd-Elfattah [9], Bhattacharyya and
failures  and  then  the  failure  information  is related to Soejoeti [10], Ismail and Aly [11] and EL-Sagheer [12].
that at  an  operational  stress level through a given In life testing and reliability studies, the experimenter
stress- dependent model. When such model is unknown, may not always obtain complete information on failure
the accelerated life test cannot be conducted and instead times for all experimental units. Data obtained from such
the partially accelerated life tests (PALT) become suitable. experiments are called censored data. Saving the total time
The PALT combines both ordinary and accelerated life on test and the cost associated with it are some of the
tests. The aim of such testing is to rapid obtaining data, major reasons for censoring. A censoring scheme (CS),
which yield desired information on product life or which can balance between total time spent for the

reliability analysis to save more time and money over the
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experiment, number of units used in the experiment and (3)
the efficiency of statistical inference based on the results
of the experiment, is desirable. The most common CSs are
type-I  (time)  censoring  and  type-II  (unit)  censoring. and
The conventional type-I and type-II CSs do not have the
flexibility of allowing removal of units at points other than
the terminal point of the experiment. Because of that, a (4)
more general CS called progressive type-II censoring has
been used in this article. This type of CS allows to the In the sequel, distribution with density defined in (2)
experimenter to save time and cost and it is useful when will be referred to the distribution has a power hazard
the units being tested are very expensive. Schematically function (DPHF for brevity). For 0 <  < 1, the DPHF has
a progressively type-II censored sample can be described a decreasing hazard function. For  > 1, the DPHF has an
as follows. Suppose that n independent units are put on increasing hazard function. It is clear that some well-
a life test with continuous identically distributed failure known life time distributions as the Weibull, Rayleigh and
times X , X , ..., X . Suppose further that a censoring exponential is special cases of the DPHF distribution.1 2 n

scheme (R , R , ..., R ) is previously fixed such that Such that,1 2 m

immediately following the first failure X , R  surviving1 1

units are removed from the experiment at random and If  =  then DPHF reduces to Weibull ( ,1)
immediately  following  the  second  failure X , R If  then DPHF reduces to Rayleigh( )2 2

surviving items are removed from the experiment at
random.  This  process continues until, at the time of the
m-th observed failure x , the remaining R  surviving unitsm m

are removed from the test. The m ordered observed failure
times denoted by  are

called progressively type-II right censored order statistics
of size m from a sample of size with progressive censoring
scheme (R , R ,....,R ). It is clear that . The1 2 m

special case when  so that R  = n maximum likelihood estimators (MLEs) of the involvedm

– m is the case of conventional type-II right censored parameters as well as the corresponding approximate
sampling. Also when , so that m = n, confidence intervals (ACIs). The two parametric bootstrap
the progressively type-II right censoring scheme reduces confidence intervals (CIs) for the parameters are
to the case of no censoring (ordinary order statistics) see discussed in Section 4. Section 5 deals with the Bayesian
Balakrishnan and Aggarwala [13], Balakrishnan [14] and approach that uses the well-known Markov chain Monte
EL-Sagheer [15]. Carlo method. A simulation example to illustrate the

This article interested in the estimation of the approach is given in Section 6. Finally, Section 7 provides
parameters and the acceleration factor when the sample is some concluding remarks.
available progressive type-II censoring scheme from
distribution has a power hazard function under SSPALT MATERIALS AND METHODS
model. The power hazard function has been defined by
Mugdadi [16] as: Basic Assumptions and Test Procedure: The following

(1) framework of step-stress partially accelerated life test

Corresponding to this hazard function, cumulative
distribution function (cdf), probability density function n Identical and independent units are put on the life
(pdf) and survival function are given respectively by test.

(2) The test is terminated at m-th failure, where m is

If = 1 then DPHF reduces to exponential distribution
with mean 1/ .

Therefore, the results obtained in our study will be
valid for weibull, Rayleigh, exponential distributions and
the other distributions have power hazard function.

The rest of this paper is organized as follows. In
Section 2 we provide some basic assumptions and test
procedure. Section 3, presents the derivation of the

assumptions are used throughout the paper in the

based on progressively type-II censored sample:

The lifetime of each unit has PHFD ( , ).

prefixed (m n).
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Each of the n units is first run under normal use condition. If it does not fail or remove from the test by a pre-
specified time , it is put under accelerated condition (stress).
At the i-th failure a random number of the surviving units, R , i = 1,2,...,m – 1 are randomly selected and removed fromi

the test. Finally, at m-th failure the remaining surviving units  are all removed from the test and

the test is terminated.
Let n  be the number of failures before time at the normal condition and let m – n  be the number of failures after time1 1

 at accelerated condition, then, the observed progressive censored data are

where  and .

According to DeGroot and Goel [3] the lifetime denoted by Y, of a unit under SSPALT can be written as:

(6)

where T is the lifetime of the units under normal condition,  is the stress change time and  is the acceleration factor
(  > 1).

From (6), the probability density function of a total lifetime Y of test unit can be written as;

(7)

which is obtained by the transformation variable technique using the density in (3) and the model proposed by DeGroot
and Goel [3] which is given in (6).

Maximum Likelihood Inference: In this Section, the point and interval estimations of the model parameters and
acceleration factor are introduced using the maximum likelihood method based on progressive type-II censoring. Also,
Fisher information matrix of the model parameters and acceleration factor are presented.

Point Estimation: Let   be the observed values of the lifetime Y obtained from a progressive

censoring scheme under SSPALT with censored scheme . The maximum likelihood function of the
observations  is given by;

(8)

where  and



( )

( ) ( )

1

2

exp ,

,

exp .

S y y

S y y

  
= − 

 


   = −  + −     

( ) ( ) ( ) ( ) ( )( )

( ) ( )( )( )

1
1

1

1

1

1 1

11

1 1

, , |  exp 1 1

,

n m
m nm

i i ii
i i n

n m

ii
i i n

L y C R y R

y

−

= = +

−−

= = +

    = − + + +     
  
  ×
     

∑ ∑

∏ ∏

( ) ( ).i iy= + −

( )( , , | ) log , , |y L y=

( ) ( ) ( )

( ) ( ) ( )( )

1

1

1

1

1
1 1

1 1

( , , | ) log log 1 log log

1 1 .

n m

i i
i i n

n m

i i ii
i i n

y m m n y

R y R

= = +

= = +

 
 = + − + − +
 
 

 
 − + + +
 
 

∑ ∑

∑ ∑



( ) ( ) ( )( )
1

11 1

( , , | ) 1 1 1 0.
n m

i i ii
i i n

y m R y R
= = +

 ∂  = − + + + =
 ∂
 
∑ ∑



( ) ( ) ( ) ( )( )
1

1

1

1 1

1ˆ , 1 1 ,
n m

i i ii
i i n

m R y R

−

= = +

  
  = + + +
  

  
∑ ∑

( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

1

1

1

1

1

1

1 1

1 1

2
1 1

( , , | )
log log

1 1 log 1 log

1 1 1 0,

n m

i i
i i n

n m

i i i i ii
i i n

n m

i i ii
i i n

y
y

R y y R

R y R

= = +

= = +

= = +

∂
= +

∂

  
  − + + +
  

 
 
 + + + + =
 

 

∑ ∑

∑ ∑

∑ ∑



World Appl. Sci. J., 36 (3): 456-469, 2018

459

(9)

From (7)-(9), we get

(10)

where,

(11)

Therefore, the natural logarithm of the likelihood function without normalized constant
is then given by;

(12)

Calculating the first partial derivatives of Equation (12) with respect to ,  and  and equating each to zero, we get the
likelihood equations as

(13)

Therefore,

(14)

(15)
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And

(16)

Now, we have a system of three non-linear likelihood equations (14)-(16) in three unknowns ,  and . It cannot
be solved analytically. The Newton-Raphson iteration method is used to obtain the estimates. The algorithm is described
as follows:

Use the method of moments or any other methods to estimate the parameters ,  and  as starting point of iteration,
denote the estimates as ( , , ) and set k = 0.0 0 0

Calculate  and the observed Fisher Information matrix

 given in the next subsection.

Update ( , , ) as.

(17)

Set k = k + 1 and then go back to Step 1.
Continue the iterative steps until  is smaller than a threshold value. The final estimates

of ( , , ) are the MLE of the parameters, denoted as .

Approximate Confidence Intervals: As indicated by Vander and Meeker [17] the most common method to set confidence
bounds for the parameters is to use the asymptotic normal distribution of the MLEs. The asymptotic variance and
covariance of the MLEs,  and  are given by the entries of the inverse of the Fisher information matrix

 where i,j = 1,2,3 and . Unfortunately, the exact closed forms for the

above expectations are difficult to obtain. Therefore, the observed Fisher information matrix
, which is obtained by dropping the expectation operator E, will be used to construct

confidence intervals for the parameters, see Cohen [18]. The observed Fisher information matrix has second partial
derivatives of log-likelihood function as the entries, which easily can be obtained. Hence, the observed information matrix
is given by;

(18)

Therefore, the asymptotic variance--covariance matrix for the MLEs is obtained by inverting the observed
information matrix . Or equivalent.
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(19)

It is well known that under some regularity conditions, see Lawless [19],  is approximately distributed as

multivariate normal with mean ( , , ) and covariance matrix . Thus, the (1 – )100% approximate confidence

intervals (ACIs) for ,  and  can be given by;

(20)

where Z  is the percentile of the standard normal distribution with right-tail probability /2. The problem with applying/2

normal approximation of the MLE is that when the sample size is small, the normal approximation may be poor. However,
a different transformation of the MLE can be used to correct the inadequate performance of the normal approximation.
Meeker and Escobar [20] suggested the use of the normal approximation for the log-transformed MLE. Thus, A two-sided
(1 – )100% normal approximation CIs for  = ( , , ) are given by;

(21)

where

Parametric Bootstrap Methods: The bootstrap is a resampling method for statistical inference. It is commonly used to
estimate confidence intervals, but it can also be used to estimate bias and variance of an estimator or calibrate hypothesis
tests. Also it is evident that the confidence intervals based on the asymptotic results do not perform very well for small
sample size. For this, we propose to use confidence intervals based on the parametric bootstrap methods. We present
two parametric bootstrap methods, (i) percentile bootstrap method (we call it PB) based on the idea of Efron [21]. (ii)
bootstrap-t method (we call it BT) based on the idea of Hall [22]. For more survey of the parametric bootstrap methods,
see Davison and Hinkley [23] and a more recently reviewed article by Kreiss and Paparoditis.[24]. The following steps
are followed to obtain bootstrap samples for both methods:

Based on the original progressively type-II sample,  compute

and .
Use  and  to generate a bootstrap sample  with the same values of R , i = 1,2,..,m using algorithm presentedi

in Balakrishnan and Sandhu [25].
As in Step 1 based on  compute the bootstrap sample estimates of and  say  and .

Repeat the above Steps 2 and 3 N times and arrange all  and  in ascending order to obtain the bootstrap
sample , where  and .

Percentile Bootstrap Procedure: Let  be the cumulative distribution function of . Define

 for given z The approximate bootstrap 100(1– )100% confidence interval of  is given by;



 , 1 .
2 2

kPB kPB
∗ ∗    Ψ Ψ −        

[ ] [ ] [ ]1 2 ... N
k k k
∗ ∗ ∗< < <

[ ]
 [ ] 

 [ ]
,  1,2,..., , 1,2,3,

( )

j
kkj

k j
k

N
j N k

Var

∗

∗

∗

 Ψ − Ψ 
 = = =

Ψ

 1 2ˆ ˆ,Ψ = Ψ = 3 ˆΨ =  [ ]( )
j

kVar
∗

Ψ

( ) ( ), 1,2,3kW z P z k∗= < =

  1/ 2 1( ) ( ).kBT k kN Var W z− −Ψ = Ψ + Ψ

 kΨ

 , 1 .
2 2

kBT kBT
∗ ∗    Ψ Ψ −        

1

1

1

( ) ,  0,

( )  0, .

( ) ,  1.

−

−

−

 ∝ >
 ∝ >


∝ >

( ) 1( , , ) ,  0, 0, 1.−∝ > > >

0 0 0

( , , | ) ( , , )
( , , | ) .

( , , | ) ( , , )

L y
y

L y d d d

∗
∞ ∞ ∞

×
=

×∫ ∫ ∫

World Appl. Sci. J., 36 (3): 456-469, 2018

462

(22)

Bootstrap-T Procedure: We find the order statistics  where,

(23)

where , and  is obtained using the Fisher information matrix. Let

 be the cumulative distribution function of µ . For a given z, define k
*

(24)

Thus, The approximate bootstrap 100(1– )% confidence interval of  is given by

(25)

Bayes  Estimation:  In  this  section  we  obtain  Bayesian  estimates  and   the   corresponding   credible   intervals  of
the unknown  parameters ,   and . Let us consider independent vague priors for the parameters ,  and , as
follows:

(26)

Therefore, the joint prior of the parameters  ,  and  can be expressed by;

(27)

It is to be noted that our objective is to consider vague priors so that the priors do not have any significant roles
in the analysis that follow. However, if one uses the prior beliefs different from (26) and resorts to sample based
approaches for analyzing the posterior, one may use the concept of sampling-importance-resampling without working
afresh with the new prior-likelihood setup, see Upadhyay et al. [26]. The joint posterior density function of the
parameters ,  and  denoted by  ( , ,  | x), up to proportionality can be obtained by combining the likelihood*

function (10) with the prior (27) via Bayes' theorem and it can be written as:

(28)

Therefore, the Bayes estimate of any function of the parameters, say g( , , ), under squared error loss function
(SELF) can be obtained as:
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(29)

It may be noted that, the calculation of the multiple integrals in (29) cannot be solved analytically. In this case, we
use the MCMC approximation method to generate samples from the joint posterior density function in (28) and then
compute the Bayes estimators of the unknown parameters and construct the corresponding credible intervals. To
implement the MCMC methodology, we consider the Gibbs within Metropolis sampler, which requires the derivation of
the complete set of conditional posterior distribution see Metropolis et al. [27] and Tierney [28]. From (28), the joint
posterior up to proportionality can be written as:

(30)

where . The full conditionals for ,  and  can be written, up to proportionality, as;

(31)

(32)

and

(33)

It can be easily seen that the conditional posterior densities of  given in (31) is gamma density with parameters
. Thus, samples of  can be easily generated using any gamma

generating routine. Also, since the conditional posteriors of  and  in (32) and (33) do not present standard forms, but
the plot of both them shows that they similar to normal distribution see Figures 1 and 2, and so Gibbs sampling is not
a straightforward option, the use of the Metropolis-Hasting (M-H) sampler is required for the implementations of MCMC
methodology. Given these conditional distributions in (31)-(33), below is a hybrid algorithm with Gibbs sampling steps
for updating the parameter  and with M-H steps for updating  and . To run the Gibbs sampler algorithm we started
with the MLEs of  and . We then drew samples from various full conditionals, in turn, using the most recent values
of all other conditioning variables unless some systematic pattern of convergence was achieved. Now, the following
steps illustrate the process of the M-H algorithm within Gibbs sampling:
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Start with initial guess .

Set j = 1.
Generate  from Gamma (j)

Using the following M-H algorithm, generate  and  from  and  with(j) (j)

the normal proposal distributions  and .

Generate a proposal  from  and  from * *

Evaluate the acceptance probabilities

(34)

Generate a u  and u  from a Uniform (0, 1) distribution1 2

If u  <  accept the proposal and set  else set 1

If u  <  accept the proposal and set  else set 1

Set j = j + 1
Repeat Steps (3)-(5) N times.

In order to guarantee the convergence and to remove the affection of the selection of initial value, the first M
simulated varieties are discarded. Then the selected sample are ,  and , j = M + 11,,...,N, for sufficiently large N,(j) (j) (j)

forms an approximate posterior sample which can be used to develop the Bayes estimates of  = ,  or  as;

(35)

To compute the credible intervals of ,  and , order ,  and i=1,...,N as ,(i) (i) (i)

and  Then the 100(1– )% credible intervals of  = ,  or  become.

(36)

RESULTS AND DISCUSSION

Numerical Computations: In this section, we present a simulation example to check the estimation procedures. In this
example, by using the algorithm described in Balakrishnan and Sandhu [23], we generate a progressive type-II censored
sample from DPHF( , ) under SSPALT model. The generation of a progressive type-II censored sample from DPHF
under SSPALT model is performed according to the following algorithm.

Specify the values of n, m and R , i=1,2,...m.i

Specify the values of the parameters ,  and .
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Specify the values of the optimal stress change time 
Generate a random sample with size n and censoring size m from the random variable Y given by (6), the set of data
can be considered as:

,

where R = (R , R ,...,R ) and 1 2 m

Use the progressive type-II censored sample to compute the MLEs of the model parameters and the acceleration
factor. The Newton-Raphson method is applied for solving the nonlinear system to obtain the MLEs of the
parameters ,  and .
Compute the 95% bootstrap confidence intervals for the model parameters and the acceleration factor, using the
steps described in Section 4.
Compute the Baye estimates of the parameters ,  and  based on MCMC algorithm described in Section 5.

A simulation data for progressive type-II censored sample under SSPALT model from DPHF with true values =
0.5,  = 1.5, acceleration factor  = 2 and  = 0.90, using progressive censoring schemes n = 40, m = 24 and R= (2, 0, 1,
2, 0, 0, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0) has been truncated after four decimal places and it has been presented
in Table 1. In the MCMC approach, we run the chain for 32000 times and discard the first 2000 values as `burn-in'. Figures
1 and 2 plots the posterior density functions  and . The MLEs (.) , bootstrap (.) , (.)  andML PB BT

Bayes MCMC (.)  point estimates of the parameters are obtained and presented in Table 2. The approximateMCMC

confidence intervals (ACIs), bootstrap confidence intervals (PBCIs, BTCIs) and credible intervals (CRIs) for the
parameters ,  and  are computed. The results of 95% ACIs, PBCIs, BTCIs, and CRIs are presented in Table 3. Figures
3-5 show simulation number of ,  and  generated by MCMC samples (dashed lines (...) represent the posterior means
and soled lines (-) represent lower and upper bounds 95% probability interval.) and the corresponding histograms in
Figures 6-8. A sample of size 30 000 is the obtained to make approximate Bayesian inference including posterior mean,
median, mode and credible interval of the parameters of interest constructed by the 2.5% and 97.5% quantities. The
MCMC results of the posterior mean, median, mode, standard deviation (S.D) and skewness (Ske) of the parameters ,

 and  are displayed in Table 4.

Table 1: SSPALT simulation data with true values for ,  and 
Under normal condition Under accelerated condition
0.1579 0.2368 0.2557 0.9297 0.9319 1.1055 1.1584 1.1823
0.4285 0.4866 0.5579 1.2026 1.2510 1.2676 1.2714 1.2759
0.6699 0.6714 0.8488 1.5194 1.5976 1.5980 2.1318 3.1422

Table 2: Different point estimates for ( , , ) = (0.5,1.5,2)
Parameters (.) (.) (.) (.)ML PB BT MCMC

0.5077 0.5261 0.5144 0.4972
1.4755 1.5513 1.5222 1.4666
1.9497 2.0839 1.9797 1.9628

Table 3: 95% confidence intervals for ,  and 
Method Length Length Length
ACI [0.1945, 1.3247] 1.1302 [0.8802, 2.4735] 1.5933 [0.6026, 6.3078] 5.7052
PBCI [0.2354, 1.4482] 1.2128 [0.9233, 2.7398] 1.8165 [0.7858, 6.5213] 5.7355
BTCI [0.1388, 1.0982] 0.9594 [0.5764, 2.1155] 1.5391 [0.8427, 4.1206] 3.2779
CRI [0.3157, 0.7140] 0.3983 [1.0473, 1.9205] 0.8732 [0.9223, 3.4492] 2.5269

Table 4: MCMC results for ,  and 
Parameters Mean Median Mode Variance S.D Ske

0.4972 0.4891 0.4759 0.0110 0.1050 0.4403
1.4666 1.4601 1.4477 0.0495 0.2226 0.2341
1.9628 1.9588 1.9357 0.0521 0.2282 0.3547
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Fig. 1: Posterior density function  of .

Fig. 2: Posterior density function  of 

Fig. 3: Simulation number of  gene-rated by the MCMC method

Fig. 4: Simulation number of  gene-rated by the MCMC method
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Fig. 5: Simulation number of  gene-rated by the MCMC method

Fig. 6: Histogram of  generated by the MCMC method

Fig. 7: Histogram of  generated by the MCMC method

Fig. 8: Histogram of  generated by the MCMC method
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CONCLUSION 6. Abdel-Hamid, A.H. and E.K. Al-Hussaini, 2009.

Based on progressively type-II censored samples, exponentiated exponential distribution with type I
this article is a related to full Bayes and non-Bayes censoring. Comput. Statist. Data Anal., 53: 1328-1338.
procedure for the analysis of the SSPALT using the DPHF 7. Bai, D.S., S.W. Chung and Y.R. Chun, 1993. Optimal
failure model. The classical Bayes estimates cannot be design of partially accelerated life tests for the
obtained in explicit form. One can clearly see the scope of Lognormal distribution under type-I censoring.
MCMC-based Bayesian solutions which make every Reliability Eng. & Sys. Safety, 40: 85-92.
inferential development routinely available. In this article, 8. Abdel-Ghani, M.M., 2004. The estimation problemof
we have considered the maximum likelihood and Bayes the log-logisticparameters instep partially accelerated
estimates for the parameters of DPHF using progressive life tests using type-I censored data. Nat. Rev. Soci.
type-II censored scheme. This article also studied the Scie., 41(2): 1-19.
construction of confidence intervals for the parameters by 9. Abd-Elfattah, A.M., A.S. Hassan and S.G. Nassr,
using the parametric bootstrap methods. It well known 2008. Estimation in step-stress partially accelerated
that when all parameters are unknown, the Bayes life tests for the Burr type XII distribution using type
estimates cannot be obtained in explicit form. The MCMC I Censoring. Statist. Method., 5: 502-514.
and parametric bootstrap techniques are used to compute 10. Bhattacharyya, G.K. and Z. Soejoeti, 1989. A
the approximate Bayes estimates and the corresponding tampered  failure  rate model for step-stress
credible intervals. A numerical example using the accelerated life test. Comm. Statist. Theory Methods,
simulated data set is presented to illustrate how the 18(5): 1627-1643.
MCMC and parametric bootstrap methods are work based 11. Ismail, A.A. and H.M. Aly, 2010. Optimal planning of
on progressive censored data under SSPALT model. failure-step  stress  partially accelerated life tests

ACKNOWLEDGEMENTS 80(12): 1335-1348.

The author thanks the referees and the associate partially accelerated life tests based on progressive
editor for their useful suggestions to improve the article. type-II censoring. Bulletin of the Malaysian

REFERENCES 016-0311-9.

1. Nelson, W., 1990. Accelerated Life Testing: Statistical Censoring: Theory, Methods, and Applications.
Models, Data Analysis and Test Plans. John Wiley Birkhauser, Boston, Mass, USA.
and Sons, New York, ISBN: 9780471522775, 1990, 14. Balakrishnan, N., 2007. Progressive censoring
Pages: 601. methodology: an appraisal (with discussions). Test

2. Rao, B.R., 1992. Equivalence of the tampered random 16: 211-296.
variable and the tampered failure rate models in 15. EL-Sagheer R.M., 2016. Estimation of parameters of
accelerated life testing for a class of life distributions. Weibull-Gamma distribution based on progressively
Communi. Stat. Theory Methods, 21: 647-664. censored data. Statistical Papers, DOI 10.1007/s00362-

3. De  Groot,  M.H.   and   P.K.  Goel,  1979. Bayesian 016-0787-2.
and  optimal  design in partially accelerated life 16. Mugdadi, A.R., 2005. The Least squares type
testing,  Naval   Research   Logistics   Quarterly, estimation of the parameters in the power hazard
16(2): 223-235. function. Applied Mathematics and Computation

4. Bai, D.S. and S.W. Chung, 1992. Optimal design of 169(2): 737-748.
partially accelerated life tests for the Exponential 17. Vander Wiel S.A. and W.Q. Meeker, 1990. Accuracy
distribution under type-I censoring, IEEE Trans. On of approx confidence bounds using censored
Reliability, 41(3): 400-406. Weibull regression data from accelerated life tests.

5. Ismail, A.A., 2014. Inference for a step-stress partially IEEE Trans Reliab., 39(3): 346-351.
accelerated life test model with an adaptive Type-II 18. Cohen, A.C., 1965. Maximum likelihood estimation in
progressively hybrid censored data from Weibull the Weibull distribution based on complete and on
distribution. J. Comput. Appl. Math., 260: 533-542. censored samples. Technometrics, 5: 579-588.

Estimation in step-stress accelerated life tests for the

under type-II censoring, J. Statist. Comput. Simul.,

12. EL-Sagheer R.M., 2016. Inferences in constant-

Mathematical Sciences Society, DOI 10.1007/s40840-

13. Balakrishnan, N. and R. Aggarwala, 2000. Progressive



World Appl. Sci. J., 36 (3): 456-469, 2018

469

19. Lawless, J.F., 1982. Statistical Models and Methods 25. Balakrishnan, N. and R.A. Sandhu, 1995. A simple
for Lifetime Data, John Wiley and Sons, New York. simulation algorithm for generating progressively

20. Meeker, W.Q. and L.A. Escobar, 1998. Statistical type-II censored samples, Amer. Statist., 49: 229-230.
Methods for Reliability Data, Wiley, New York. 26. Upadhyay, S.K., R. Agrawal and A.F.M. Smith, 1996.

21. Efron, B., 1982. The bootstrap and other resampling Bayesian analysis of inverse Gaussian non-linear
plans, In: CBMS-NSF Regional Conference Seriesin, regression by simulation. Sankhya B., 58(3): 363-378.
Applied Mathematics, SIAM, Philadelphia, PA. 27. Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth,

22. Hall, P., 1988. Theoretical comparison of Bootstrap A.H. Teller and E. Teller, 1953. Equations of state
confidence intervals, Annal. Stat., 16: 927-953. calculations by fast computing machines. J. Chem.

23. Davison, A.C. and D.V. Hinkley, 1997. Bootstrap Phys., 21: 1087-1091.
methods and their applications. 2  ed. Cambridge: 28. Tierney, L., 1994. Markov chains for exploringnd

Cambridge University Press. posterior distributions (with discussion). The Annal.
24. Kreiss, J.P. and E. Paparoditis, 2011. Bootstrap Stat., 22: 1701-1728.

methods for dependent data: a review, J. Korean
Statist. Soc., 40: 357-378.


