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Abstract: The phase performance of hydrocarbons is a very complicated behavior that hydrocarbons show at
the time of phase change or when they remain in a particular phase. Process design is almost impossible without
a good understanding of this behavior. Artificial Neural Networks have been widely utilized for engineering
applications during the last two decades. Therefore undersaturated oil formation volume factor and isothermal
compressibility coefficient have been developed using the Artificial Neural Networks (ANNs) approach.
Detailed comparison has also been made with various important correlations currently available in the literature.
Sensitivity analysis of the developed models was also performed to determine the relative importance of various
input parameters. It was found that the developed models outperformed most other existing correlations by
giving significantly lower values of average absolute relative error for the parameters studied.
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INTRODUCTION Over the last six decades, various researchers have

Calculations for material balance, estimation of oil reservoir fluid properties with varying degrees of success.
reserves, inflow performance, well test analysis and The first approach towards theoretical evaluation of PVT
numerical reservoir simulation constitute important properties was made way back in 1942, when Katz [1]
problems in reservoir engineering. Such problems require developed five methods for predicting crude oil shrinkage.
knowledge  of  reservoir  fluid  properties,   like  formation Standing [2] presented graphical correlations for bubble
volume factor, bubble/dew point pressure, viscosity and point pressure, oil formation volume factor (OFVF) and
oil compressibility. The accuracy of the calculations total OFVF, based on 105 laboratory flash vaporization
depends on the exactness in predicting such properties. observations of California crude. He reported an average
These properties vary with the geographical location of error of 4.8% for his correlations and later put them in the
the oil/gas reserve and, ideally should be determined from form of algebraic equations.
laboratory analysis of the samples. But such sampling and Vasquez et al. [3] presented correlations for solution
consequent analysis involves considerable expenses and GOR, saturated and undersaturated OFVF and
time, which is undesirable. So, theoretical computations, undersaturated oil viscosity from a study of more than
collectively known as oil-system correlations (or PVT 6000 measurements from PVT analysis of 600 samples
correlations), based on easily measurable parameters, are from all  over  the  world  using  regression  methods.
used for the prediction of reservoir fluid properties. Such Their study showed that gas gravity is a very important
parameters include temperature, pressure, solubility and correlating parameter, but its measurement is seldom very
API and gas gravity. accurate  because  it  depends  on conditions at which the

tried to develop appropriate correlations for predicting
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gas/oil separation is made. In order to enhance accuracy Elsharkawy [10]; Gharbi, Elsharkawy, & Kartoub [11]) to
of the predicted values, they recommended the use of gas use advanced soft computing tools for the development
gravity values at a separator pressure of 100 psig (790.83 of PVT correlations, especially artificial neural networks
kPa), as at this pressure oil shrinkage was minimum for the (ANN). Gharbi [8] presented a model based on multilayer
available separator tests. A formula was also provided to perceptron (MLP) trained by backpropagation with
convert gas gravity value from any pressure to  100  psig momentum algorithm for isothermal compressibility
(790.83 kPa). Two sets of equations were provided for coefficient for undersaturated crude oil from the regions
each of the correlations, one for crudes above 30 API and of Middle East. Elsharkawy [9] developed models based
another for those below, leading to better prediction. on radial basis function network for prediction of OFVF,
Linear regression was used to estimate isothermal GOR, oil viscosity, saturated oil density, undersaturated
compressibility and that was used to determine oil compressibility and evolved gas gravity. Input data
undersaturated OFVF. Average error reported was - 0.7% used were reservoir pressure, temperature, stock tank oil
for bubble point pressure, - 0.4% for saturated OFVF and - gravity and separator gas gravity. Gharbi & Elsharkawy
7.541% for undersaturated oil viscosity. [10] presented models for prediction of bubble point

Glaso [4] extended Standing's correlation by taking pressure and OFVF as functions of solution gas–oil ratio,
into account crude oil paraffinicity and presence of non- gas specific gravity, oil specific gravity and temperature
hydrocarbons (CO , N  and H S) in reservoir surface for Middle Eastern crudes. Gharbi et al. [11] attempted2 2 2

gases. He used graphical and regression analysis for universal MLP based models for bubble point pressure
bubble point pressure, saturated OFVF, total OFVF and and OFVF. They used 5200 data points from all over the
dead oil viscosity. He reported an average error of 1.28% world and reported an average absolute relative error of
for bubble point pressure, - 0.43% for saturated OFVF and 6.48% and 1.97% for bubble point pressure and OFVF
- 4.56% for total OFVF. respectively. Osmanand Al-Marhoun [12] have presented

Al-Marhoun [5] developed correlations for Middle correlations for bubble point pressure and saturated
East crude, using 160 observations each for bubble point OFVF using MLP trained by backpropagation with early
pressure and saturated OFVF and 1556 observations for stopping for Saudi Arabian crudes. They reported an
total OFVF collected from 69 bottom hole samples from 69 average absolute relative error of 5.89% for bubble point
Middle East oil reservoirs. Linear and non-linear multiple pressure and 0.511% for saturated OFVF. 
regression analysis were used to develop the correlations However, most of these correlations  were  found to
and nomographs were presented for each one of them. be appropriate for the specific region where the
Labedi [6, 7] used 128 samples from Libya, Nigeria and parameters have been measured, but not  for  other
Angola to predict OFVF, density and compressibility regions. The unavailability of a single universal
using multiple regression. He argued that all Standing correlation suited for all kinds of crudes underlines the
based correlations used total GOR and total gas gravity, need for specific geographical area-based correlations, as
which cannot be obtained from production tests. He discussed by Hanafy et  al.  [13]  with  reference to
proposed using easily measurable field data such as first- Egyptian crudes. The current study aims to present
stage separator pressure and temperature, producing correlations for the undersaturated oil FVF and isothermal
gas/oil ratio, stock-tank oil gravity, reservoir pressure and compressibility for Iranian crudes. We have presented
temperature. Flash and differential vaporization data were two models for these parameters for Iranian crude based
combined and separator conditions were incorporated in on MLP.
the correlations to give an adequate description of the
overall volume changes.Various other correlations were Data Acquisition and Analysis: Data used for this study
also proposed by different researchers from all over the was gathered from several Iranian crude oil samples. Each
world, with varying degrees of accuracy in terms of data set was checked for any missing data and if found,
average error and based on crude samples from different such points were rejected. After this, we were left with 575
oil fields. Most of these correlations were developed data sets each for undersaturated oil OFVF and 203 data
through linear or non-linear regression. sets for undersaturatedisothermal compressibility

In the late 1990s, rapid growth of data mining coefficient of oil. A separate ANN model was formulated
techniques and computational capability led some for each of these properties. The ranges of crude oil
researchers (Gharbi [8]; Elsharkawy [9]; Gharbi & properties are shown in Table 1.
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Fig. 1: A typical MLP artichetrue.

Table 1: Properties of Iranian crudes.
Parameter Minimum Maximum Mean Standard Deviation
Res. pressure, psi 1313 9300 3924.2 1107.9
Bubble point pressure, psi 1071 4590 3546.9 1097.5
Res. temperature, F 116 274 220.8 43.12
Solution gas oil ratio, scf/stb 66 1995.9 1197.0 500.4
Oil API gravity 7.24 34.5 29.4827 5.57
Gas gravity (air=1) 0.774 1.610 0.997 0.151
Oil compressibility coefficient, 1/psi 6.2e-06 3.55e-05 1.71e-05 6.48e-06
Undersaturated OFVF, bbl/stb 1.04 2.41 1.59 0.373

Artificial Neural Networks: Artificial neural networks is first chosen and several input and desired output
(ANNs) are massively parallel, distributed processors, (called target) are provided to the network. The network
constituting of numerous simple processing units, called computes some values (called network output) depending
neurons, developed by mimicking the behavior of the on its processing units, which are compared with the
human brain. Like the human brain, ANNs gather targets.Figure 1 also shows a single neuron of the MLP.
information from the environment by a ‘learning process’ The response from each neuron is given by y = f(w x + b ),
and store them in interneuron connection strengths, where w  is the synaptic weight between jth neuron of
called synaptic weights. This learning process takes place one layer and ith neuron of the preceding layer, b  is the
through a learning algorithm, which modifies the synaptic bias of the jth neuron, x is the input and f(.) denotes the
weights to attain a desired objective. The detailed theory activation function. An error function is chosen which
for solving these kinds of problems is discussed in detail computes the error between the network output and target
by Haykin [14] andBishop [15] and only a basic overview and the synaptic weights are updated so as to minimize
of the topics pertaining to the problem of PVT properties this error. The error function is usually the mean of the
will be provided below. PVT properties fall under the squared errors (MSE) over all the inputs and is denoted
category of regression problem and it involves supervised by E.
learning paradigm. For a particular input, the error can be considered to

There exist various such learning algorithms and one be some function of the weights. To make it more
of the most popular is feed forward multilayer perceptron amenable to mathematical analysis, a differentiable
(MLP) with backpropagation. An example of MLP is transfer function is chosen for a neuron, which ultimately
shown in Figure 1. In this technique, network architecture renders  the  error function to be differentiable. Hence any
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Table 2: Details of ANN architecture and input variables
Parameter Input variables Network architecture # Data points # Training points # validate points # Test points
Undersaturated OFVF T, P, , API,, R 5-9-5-1 575 403 86 86g s

Oil compressibility coefficient T, P, , API,, R 5-13-8-1 203 143 30 30g s

gradient based unconstrained  optimization  technique RESULTS AND DISCUSSION
(e.g. steepest descent, conjugate gradient, BFGS,
Marquardt–Levenberg) may be chosen to minimize the The statistical analysis of outputs of the neural
error. This process is carried on iteratively till the error network models for oil FVF and isothermal compressibility
cannot be minimized further without compromising the coefficient are listed in Table 3 and Table 4 respectively.
generalization capability of the network. After training is Results of the ANN model are compared with other PVT
completed, the network is tested for inputs which have correlations in terms of statistical measures like average
not been used during the learning process. If the errors absolute relative error (E ), maximum error (E ), minimum
are comparable for both training and testing, the net is error (E ), correlation coefficient and standard deviation
finalized and is ready for generating outputs for inputs of absolute error ( ). These measures are defined as
with unknown targets. follows

We have studied two PVT properties as listed in
Table 2. One backpropagation network was developed for
each of these properties. Approximately 15% of the data (1)
was put in test set. For each property, the total number of
data points, the number of points in the training and test
set, network architecture and  input  variables  are  listed
in Table 2. The transfer function in the hidden layer (2)
neurons is tansigmoidal and the output layer  is  linear.
The tansigmoidal function is chosen because it is
continuous, infinitely differentiable and bounded for any
real number and hence can cause the error function to be (3)
differentiable everywhere. Also, tansig(x)  [- 1, 1],

x R, where R is the set of real numbers, hence this can The data presented in Table 3 and Table 4 is only for
act as a squashing function. The number of neurons in the test set, which were  not  used  in  model  building.
each layer and the number of layers for each network were This allows us to check whether the model performs well
decided after extensive trials with varying numbers of for data not used in model building.
neurons and layers. The network with the minimum error
was chosen. The architecture of any network is expressed Oil Formation Volume Factor for Undersaturated Crude:
as, I-H …H … - H - O, where I denotes the number of For OFVF above bubble point pressure, the ANN model1 i n

neurons in the input layer, i.e. the number of input is compared with correlations of Ahmed [16], Standing [2]
variables, H  the number of neurons in the i  hidden layer and Glaso [4]. The detailed results are shown in Table 3.i

th

and O the number of neurons in the output layer. For all Though the average absolute relative error for none of the
the networks developed here O is equal to 1, since there correlations is high, the ANN model shows significantly
is only one output. better   results   than   the   rest.   In   terms   of  correlation

aar max

min

are

Table 3: Statistical analysis of undersaturated OFVF (test data set)
Model E , % E , % E , % Correlation coefficient, % ×10aar max min are

2

Glaso 2.46 7.80 0.004 99.59 3.35
Standing 3.02 12.56 0.14 99.57 6.00
Ahmed 7.81 18.19 0.16 96.44 8.66
ANN 0.14 2.69 6.77e-05 99.98 0.59

Table 4: Statistical analysis of undersaturated oil isothermal compressibility coefficient (test data set)
Model E , % E , % E , % Correlation coefficient, % ×10aar max min are

6

Petrosky-Farshad 12.1 30.7 0.26 96.96 1.46
Vasquez-Beggs 10.5 56.4 1.64 95.21 1.21
ANN 3.90 32.3 0.0052 99.18 0.55
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Fig. 2: Cross-plots for undersaturated OFVF correlations: a) ANN; b) Ahmed; c) Standing; d) Glaso.

Fig. 3: Cross-plots for undersaturated oil isothermal compressibility coefficient: a) ANN; b) Vasquez-Beggs; c) Petrosky-
Farshad.

coefficient, all the correlations compared have similar UndersaturatedOil Isothermal Compressibility
values, close to 100%. Cross-plots (Figure 2) for all the Coefficient: For isothermal compressibility coefficient of
correlations show a near perfect fit and are almost oil, the ANN model is compared with existing correlations
indistinguishable. However, from Table 3 it can be developed by Vasquez and Beggs [3] and Petroskyand
observed that the accuracy  of  the  models  increases Farshad [16]. The detailed results are shown in Table 4.
from Ahmed to ANN through Standing and As is evident from the cross-plots (Figure 3) and Table 4
Glasorespectively. correlations  have  almost  similar performance. Correlation
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coefficient is high for all the correlations. In terms of
average absolute relative error, ANN model gives lowest
value of 3.90%, whereas the empirical correlations show
an error of around 11%.

Sensitivity Analysis: Artificial neural networks have
traditionally been regarded as black-box models since the
weights were not readily amenable to interpretation and
the dependence of the various inputs on the outputs were
not easily determinable. However, in the past few years,
several techniques have been developed which allows
determination of the contribution of a specific input on a
specific output and also  interpretation  of  the  weights.
A detailed review of various sensitivity analysis
techniques has been provided  by  Gevrey  et  al.  [17].
The authors recommend the partial derivative (PD)
method as the most stable and this is the technique used
for this study. The PD method computes the PD of a
specific ANN output with respect to each input at each of
the input vectors. For a network with n  input neurons,i

one hidden layer with n  neurons and tansigmoidalj

transfer function and linear output layer with n  neurons,k

the k  output may be expressed asth

(4)

where w  denotes the connection weight from qthn
pq

neuron in (n-1)th layer to pth neuron in nth layer and bn
m

represents the bias value for the mth neuron in the nth
layer (excluding the input layer). The equation 4 can be
easily differentiated to give the PD of kth output with
respect to ith input.

(5)

where h  is the response from mth neuron in the hiddenm

layer. Similarly, for a network with two hidden layers,
having j and m neurons in first and second hidden layer,

(6)
where h  is the response of the mth neuron of the nthn

m

hidden layer. If there are N observations, one will get N
partial derivatives; which may be plotted versus each
corresponding input variable and allow direct
interpretation of the influence of the input variable on  the

Table 5: Sensitivity analysis for undersaturated oil FVF

Variables SSD Contribution, % Rank

Pressure 11.5 0.39 5
Temperature 1514.3 50.86 1
Solution gas oil ratio 336.5 11.30 4
API gravity 375.8 12.62 3
Gas gravity 739.2 24.83 2

Table 6: Sensitivity analysis for undersaturated oil isothermal
compressibility coefficient

Variables SSD Contribution, % Rank

Pressure 27.90 24.51 3
Temperature 0.909 0.80 4
Solution gas oil ratio 50.445 44.30 1
API gravity 0.285 0.25 5
Gas gravity 34.311 30.14 2

output. If the PD is negative, it means the output will
decrease with increase in the input variable and vice-
versa. The relative contribution of each input variable on
a specific output can be determined by computing the
sum of the squares of the partial derivatives (SSD).

(7)

where  is the PD for Jthobservation. The contribution

of each input variable is given by

(8)

The variable having the highest SSD affects the
output most. On this basis, the inputs may be ranked in
order of their influence on the output. The Table 5 and
Table 6 show sensitivity results for undersaturated oil
FVF and isothermal compressibility coefficient.

CONCLUSION

In this study, two neural network models were used
to determine the undersaturated oil formation volume
factor and isothermal compressibility coefficient for
Iranian hydrocarbon mixtures. The performance of the
new model was compared to other existing correlations
and was found to outperform them in terms of average
absolute relative error, correlation coefficient, maximum
and minimum absolute relative error and standard
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deviation  of   absolute    relative   error.   Mean  absolute 6. Labedi, R., 1990a. Use Of Production Data To
relative errors of 0.14 % for the volume factor and 3.9 % Estimate   The     Saturation     Pressure,   Solution
for the isothermal compressibility coefficient were GOR  and  Chemical  Composition  Of Reservoir
obtained. Attempts were  made  to  reach  the  best Fluids. SPE Paper 21164, SPE Latin America
network  architecture   in  terms  of  the  number of Petroleum Engineering Conference. Rio de Janeiro,
neurons and network layers. It  can  be  firmly  stated that Brazil.
the Artificial Neural Network method gives better results 7. Labedi, R., 1990b. Use of  production  data to
than previously published methods when there is a estimate  volume   factor,   density  and
sufficient amount of experimental data. Sensitivity compressibility of reservoir fluids. J. Petrol. Sci. Eng.,
analysis was also performed for each of the models 4(4): 375-390.
developed and the input variables ranked on the basis of 8. Gharbi, R., 1997. Estimating The Isothermal
their contribution.. Compressibility Coefficient Of Undersaturated

Nomenclature: Fuels, 11(2): 372-378.

API API gravity (°API) Crude Oil And Gas Systems Using RBF Network. SPE
Gas specific gravity (air = 1) Paper 49961, SPE Asia Pacific Oil and Gas Conferenceg

Standard deviation of absolute error and Exhibition. Perth, Australia.are

b Bias value of the jth neuron of a layer 10. Gharbi, R. and A.M. Elsharkawy, 1999. Neuralj

w Synaptic weight to the jth neuron of a layer from the Network Model For Estimating The PVT Propertiesji

ith neuron of the preceding layer Of Middle East Crude Oils. SPE Reserv. Eval. Eng.,
B OFVF above bubble point pressure (rb/stb) 2(3): 255-265.o

E Mean squared error 11. Gharbi, R., A.M. Elsharkawy and M. Kartoub, 1999.
E Average absolute relative error (%) Universal Neural Network Based Model Foraar

E Maximum average absolute error (%) Estimating The PVT Properties Of Crude Oil Systems.max

E Minimum average absolute error (%) Energ. Fuels, 13(2): 454-458.min

N Total number of weights in the network 12. Osman, E.A. and M.A. Al-Marhoun, 2002. Using
P Reservoir pressure (psia) artificial neural networks to develop new PVT
R Solution GOR (scf/stb) correlations for Saudi crude oils. SPE Paper 78592,s

T Reservoir temperature (°F) Abu Dhabi International Petroleum Exhibition and
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1- Ahmed’s Correlations:

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

Bubble point pressure was calculated by Al-Marhoun (Al-Marhoun 1988) Correlation (where experimental P  wasb

not available).

(A-7)

(A-8)

2- Standing’s Correlations(Standing 1947):

(A-9)

(A-10)

(A-11)

(A-12)

(A-13)
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3- Glaso’s Correlations(Glaso 1980):

(A-14)

We calculated C  from equation A-10.o

(A-15)

(A-16)

(A-17)

Appendix B- Correlation for Undersaturated Oil Isothermal Compressibility Coefficient

1- The Vasquez-Beggs Correlation(Vasquez and Beggs 1980):

(B-1)

2- The Petrosky-Farshad Correlation(Tarek 2006):

(B-2)


