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Abstract: In this paper, the problem of free convection boundary layer flow on a solid sphere in a micropolar
fluid with convective boundary conditions, in which heat is supplied through a bounding surface of finite
thickness and finite heat capacity is considered. The basic equations of boundary layer are transformed into
a non-dimensional form and reduced to nonlinear systems of partial differential equations are solved
numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are
obtained for the wall temperature, the local heat transfer coefficient and the local skin friction coefficient, as well
as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer
characteristics for different values of the material or micropolar parameter, K = 0, (Newtonian fluid), 1, 2, 3,
(micropolar fluid), the Prandtl number, Pr = 0.7, 1, 7, the conjugate parameter,  = 0.05, 0.1,0.2 and the coordinate
running along the surface of the sphere, x between 0  and 120  are analyzed and discussed.o o
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INTRODUCTION flows on a sphere in a viscous and micropolar fluid with

The essence of the theory of micropolar fluid flow lies (CHF), respectively. The natural convection heat and
in the extension of the constitutive equation for mass transfer from a sphere in micropolar fluids with
Newtonian fluid, so that more complex fluids such as constant wall temperature and concentration were
particle suspensions, liquid crystal, animal blood, presented by Cheng [8]. On the other hand, the laminar
lubrication and turbulent shear flows can  be  described mixed convection boundary layer flow about an
by this theory. The theory of micropolar fluid was first isothermal solid sphere in a micropolar fluid was studied
proposed by Eringen [1]. Extensive review of the theory by Nazar et al. [9]. It should be pointed that all the papers
and applications can be found in the review article by above studied the boundary condition of two cases, i.e.
Ariman et al. [2] and the Blasius boundary-layer flow of CWT and CHF.
a micropolar fluid is considered by Rees and Bassom [3]. It is worth mentioning that the Newtonian heating
On the other hand, Chen and Mucoglu [4] studied the conditions in which the heat transfer from the surface is
analysis of mixed, forced and free convection about a proportional to the local surface temperature have been
sphere in a viscous fluid. Further, Nazar et al. [5,6,7] used by Merkin [10] and Lesnic et al. [11-13] where free
considered the free and mixed convection boundary layer convection    boundary    layer   flow   along   vertical  and

constant wall temperature (CWT) and constant heat flux
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Fig. 1: Physical model and coordinate system equations before they are solved numerically by the Keller

horizontal surfaces in porous medium were studied. Salleh Bradshaw [24]. To the best of our knowledge, this present
et al. [14-17] studied the free and mixed convection problem (for the case of convective boundary condition)
boundary layer flows on a sphere with Newtonian heating has not been presented before, so the reported results are
in viscous and micropolar fluids. On the other hand, Aziz new.
[18] used the convective boundary conditions recently
and obtained the similarity solution for laminar thermal Basic Eguations: A heated sphere of radius a, which is
boundary layer over a flat plate by applying convective immersed in a viscous and incompressible micropolar fluid
boundary conditions. in which heat is supplied through of ambient temperature T , which is subjected to
a bounding surface of finite thickness and finite heat convective boundary conditions (CBC) is considered as
capacity Further, the similarity solutions for flow and heat shown in Figure 1.
transfer over a permeable surface and the radiation effects The gravity vector, g  acts  downward  in  the
on thermal boundary layer flow over a moving plate with opposite direction, whereas the coordinates  and  are
convective boundary conditions have been studied by chosen  such   that    measures   the   distance  along
Ishak [19] and Ishak et al. [20]. Merkin and Pop [21] the surface of the sphere from the lower stagnation point
studied the forced convection flow of a uniform stream and  measures the distance normal to the surface of the
over a flat surface with a convective surface boundary sphere.
condition. Yao et al. [22] presented the heat transfer of a We assume that the equations are subjected to
viscous fluid flow over a stretching/shrinking sheet with convective boundary conditions (CBC) of the form
a convective boundary condition. Recently, the numerical proposed by Aziz [18]. Under the Boussinesq and
solution for stagnation point flow over a stretching boundary layer approximations, the basic dimensional
surface with convective boundary conditions using the equations of the flow are (see Eringen [1] and Salleh et al.
shooting method. has been studied by Mohamed et al. [16]).
[23].

Therefore, based on the above-mentioned studies,
the aim of the present paper is to study the free
convection boundary layer flow on a solid sphere in a
micropolar fluid with convective boundary conditions.
The governing boundary layer equations are first
transformed into a system of non-dimensional equations
via non-dimensional variables and then, into non-similar

box method as described in the book by Cebeci and

(1)

(2)

(3)

(4)

subject to the boundary conditions of equations (1) to (4) (see Salleh et al. [16]; Aziz [18])

(5)
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where  and  are the velocity components along the  and  directions, respectively,  is the angular velocity of
micropolar fluid,  is the vortex viscosity, T is the local temperature, T  is the temperature of the hot fluid, g is the gravityf

acceleration, is the thermal expansion coefficient, v = µ/  is the kinematic viscosity, µ is the dynamic viscosity,  is
the density, j is the microinertia density, Pr is the Prandtl number and h  is the heat transfer coefficient for the convectivef

boundary conditions It is worth mentioning that in boundary conditions (5), n is constant and 0 n 1. The value n=0,
which leads to  at the wall, represents concentrated particle flows in which the particle density is sufficiently great
that microelements close to the wall are unable to rotate or is called “strong” concentration of microelements [25, 26].
The case corresponding to n = 1  results in the vanishing of antisymmetric part of the stress tensor and represents
“weak” concentration of microelements [26]. In this case, the particle rotation is equal to fluid vorticity at the boundary
for fine particle suspension. When n = 1, we have flows which are representative of turbulent boundary layer [27]. The
case of n = 1/2, is considered in this paper.

Let  be the radial distance from the symmetrical axis to the surface of the sphere and  is the spin gradient
viscosity which are represented by

(6)

We now introduce the following non-dimensional variables (Salleh et al. [16]; Aziz [18]):

(7)

where  is the Grashof number for convective boundary conditions.

Substituting variables (7) into (1) to (4) leads to the following non-dimensional equations

(8)

(9)

(10)

(11)

where K is the material or micropolar parameter defined as  The boundary conditions (5) become

(12)
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where and  are the conjugate parameter for convective boundary condition. It is noticed that if we write

the boundary condition  at y = 0 and when  we have  = 1, this mean the convective boundary

conditions (CBC) becomes to constant wall temperature (CWT) at  this case studied by Nazar et al [5].
To solve equations (8) to (11) subjected to the boundary conditions (12), we assume the following variables:

(13)

where  is the stream function is defined as

(14)

which satisfies the continuity equation (8). Substituting (14) into equations (9) to (11) and after some algebraic
calculation, we get the following transformed equations

(15)

(16)

(17)

subject to the boundary conditions (22)

along with  (NH).

(18) skin friction coefficient, C  and the local heat transfer

At the lower stagnation point of the sphere, x  0,
equations (15) to (17) reduce to the following nonlinear
ordinary differential equations: (23)

(19) where  is the skin friction coefficient and

(20)

(21)

and the boundary conditions (18) become

where primes denote differentiation with respect to y. The
physical quantities of interest in this problem are the local

f

coefficient, Q (x) which are given byw

 is the wall shear stress. At the

lower stagnation point of the sphere, x  0, the skin
friction coefficient and the heat transfer coefficient are

measured by  and , respectively.

RESULTS AND DISCUSSION

The nonlinear systems of partial differential
equations  (15)  to (17) subject to the boundary conditions
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Table 1: Values of the wall temperature (0, y) for various values of K when Pr = 0.7, 1, 7 and  = 1 (NH)
0.7 1 7

Pr ---------------------------------------------------- ------------------------------------------------- -----------------------------------------------
K Salleh et al [16] Present Salleh et al. [16] Present Salleh et al. [16] Present
0 26.4584 26.457843 17.2861 17.286076 3.3651 3.365051
1 38.3841 38.384234 25.2867 25.286700 4.6309 4.630875
2 49.1395 49.139487 32.4395 32.439465 5.5150 5.515012
3 59.3500 59.350021 39.2872 39.287163 6.4152 6.415192

Table 2: Values of the wall temperature (0, y) and the skin friction coefficient  for various values of K when Pr= 0.7 and  = 0.05,0.1,0.2

0.05 Present 0.1 Present 0.2 Present
------------------------------------------ ------------------------------------------- -------------------------------------------------

K (0, y) (0, y) (0, y)

0 0.149501 0.184661 0.238308 0.262053 0.360667 0.357656
1 0.157545 0.133231 0.251021 0.183022 0.378091 0.244051
2 0.162725 0.111617 0.259056 0.149459 0.388925 0.195632
3 0.166740 0.099368 0.265189 0.130425 0.397069 0.168159

(18) are solved numerically using the Keller-box method that for fixed , as K increases, the values of (0,y)
for the case of convective boundary conditions (CBC)
with four parameters considered, namely the material
parameter K, the Prandtl number Pr, the conjugate
parameter  and the coordinate running along the surface
of the sphere, x.

The numerical solution starts at the lower stagnation
point of the sphere, x  0 and proceeds around the sphere
up to the point of x = 120°. Values of K considered are K
= 0 (Newtonian fluid), 1, 2, 3 (micropolar fluid) and values
of Pr considered are Pr = 0.7, 1, 7 at different positions 0°

x 120°. It is worth mentioning that small values of
Pr(<<1) physically correspond to liquid metals, which
have high thermal conductivity but low viscosity, while
large values of Pr(>>1) correspond to high-viscosity oils.
It is worth pointing out that specifically, Prandtl numbers
Pr = 0.7, 1, 7 correspond to air, electrolyte solution such as
salt water and water, respectively.

The values of the wall temperature (0,y) for the
values of K = 0, 1, 2, 3 when Pr = 0.7, 1, 7 and  = 1 in the
case of Newtonian heating (NH) are  shown  in  Table  1.
In order to verify the accuracy of the present method, the
present results are compared with those reported by
Salleh et al. [16]. It is found that the agreement between
the previously published results with the present ones is
very good.

Table 2 shows the values of the wall temperature, (0,

y) and the skin friction coefficient,  for various

values of K when Pr= 0.7 and  = 0.05,0.1,0.2. It is found

increase but the values of  decrease. Also, it is

found that for fixed K, as  increases, both (0, y) and

 increase.

Tables 3 to 5 show the values of the wall temperature
(0, y), the heat transfer coefficient  and the skin

friction coefficient  for various values of K when

Pr = 0.7, 1, 7 and  = 0.1. It is found that for fixed Pr, as K
increases, the value of (0, y) increase but the values of 

and  decrease. Also, it is found that for fixed K,

as Pr increases, both (0, y) and  decrease but

 increase. From these tables, the values of (0, y)

are higher for micropolar fluid (K 0) than those for
Newtonian fluid (K = 0) but the values of  and

are lower for micropolar fluid (K 0) than those

for Newtonian fluid (K = 0).
Tables 6 to 9 present the values of the local heat

transfer coefficient Q (x) and the local skin frictionw

coefficient   C  for  various values of x when Pr = 0.7, 1, 7,f
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Table 3: Values of the wall temperature (0, y) for various values of K when Table 7: Values of the local skin friction coefficient, C  for various values of
Pr = 0.7, 1, 7 and  = 0.1

0.7 1 7
Pr ------------ ------------ -------------
K Present Present Present

0 0.238308 0.219728 0.144616
1 0.251021 0.232412 0.153825
2 0.259056 0.240367 0.159325
3 0.265189 0.246400 0.163335

Table 4: Values of the heat transfer coefficient for various values

of K when Pr = 0.7, 1, 7 and  = 0.1

0.7 1 7
Pr ------------ ------------ -------------
K Present Present Present

0 0.076169 0.078027 0.085538
1 0.074898 0.076759 0.084617
2 0.074094 0.075963 0.084067
3 0.073481 0.075360 0.083666

Table 5: Values of the skin friction coefficient  for various values

of K when Pr = 0.7, 1, 7 and  = 0.1

0.7 1 7
------------ ------------ -------------

Pr K Present Present Present

0 0.262053 0.232622 0.118772
1 0.183022 0.163781 0.089184
2 0.149459 0.134749 0.077445
3 0.130425 0.118279 0.070782

Table 6: Values of the local heat transfer coefficient Q (x) for various valuesw

of x when Pr = 0.7, 1 and 7, K = 0 and  = 0.5

0.7 1 7
------------ ------------ -------------

Pr x Present Present Present

0 0.330798 0.332928 0.360684 o

10 0.323643 0.327921 0.358815o

20 0.323202 0.327438 0.358336o

30 0.322499 0.326561 0.357508o

40 0.321294 0.325299 0.356348o

50 0.319768 0.323628 0.354863o

60 0.317876 0.321551 0.352915o

70 0.315431 0.318872 0.350475o

80 0.312381 0.315538 0.347495o

90 0.308578 0.311404 0.343626o

100 0.303817 0.306267 0.338416o

110 0.297992 0.300045 0.332281o

120 0.290076 0.291707 0.324164o

f

x when Pr = 0.7, 1, 7, K = 0 and  = 0.5
0.7 1 7
------------ ------------ -------------

Pr x Present Present Present
0 0.000000 0.000000 0.000000 o

10 0.034291 0.032424 0.019232o

20 0.068051 0.064377 0.038208o

30 0.100840 0.095508 0.056746o

40 0.132223 0.125369 0.074045o

50 0.161811 0.153571 0.091395o

60 0.188384 0.179001 0.106634o

70 0.213152 0.202794 0.120807o

80 0.235005 0.223868 0.133682o

90 0.253596 0.241800 0.144351o

100 0.268672 0.256273 0.153816o

110 0.279600 0.266518 0.160617o

120 0.286714 0.272626 0.164811o

Table 8: Values of the local heat transfer coefficient Q (ix) for various valuesw

of x when Pr = 0.7, 1, 7, K = 2 and  = 0.5
0.7 1 7
------------ ------------ -------------

Pr x Present Present Present
0 0.318250 0.322975 o

0.386933

10 0.317922 0.322470 0.381694o

20 0.317658 0.322153 0.381362o

30 0.317211 0.321659 0.380709o

40 0.316598 0.320812 0.379754o

50 0.315804 0.319797 0.378451o

60 0.314858 0.318588 0.376841o

70 0.313697 0.317094 0.374693o

80 0.312337 0.315328 0.372073o

90 0.310761 0.313264 0.368721o

100 0.308944 0.310862 0.364647o

110 0.306907 0.308146 0.359724o

120 0.302652 0.304752 0.353513o

Table 9: Values of the local skin friction coefficient, C   for various valuesf

of x when Pr = 0.7, 1, 7, K = 2 and  = 0.5
0.7 1 7
------------ ------------ -------------

Pr x Present Present Present
0 0.000000 0.000000 0.000000 o

10 0.063458 0.062299 0.047452o

20 0.126326 0.124072 0.094862o

30 0.188080 0.184866 0.142196o

40 0.248124 0.244147 0.189483o

50 0.305980 0.301498 0.236618o

60 0.359604 0.354889 0.282270o

70 0.411721 0.407061 0.329185o

80 0.460355 0.456068 0.375692o

90 0.505152 0.501525 0.422065o

100 0.545910 0.543212 0.467708o

110 0.581465 0.579857 0.511386o

120 0.627322 0.614398 0.556060o
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Fig. 2: Variation of wall temperature, (x, 0) with Prandtl
number Pr when K = 2 and  = 0.0.5, 0.1, 0.2

Fig. 3: Variation of the skin friction coefficient, 

with Prandtl number Pr when K = 2 and  = 0.05,
0.1, 0.2.

Fig. 4: Variation of wall temperature, (x, 0) with
conjugate   parameter   when  Pr  =0.7,  1, 7 and
K = 2

Fig. 5: Temperature profiles (0, x) for some values of 
= 0.0.5, 0.1, 0.2 when Pr= 0.7 and K = 2

Fig. 6: Velocity profiles  for some values of =

0.05, 0.1, 0.2 when Pr= 0.7 and K = 2

K = 0, 2 and  = 0.5, respectively. It is  found  that, for
fixed K, as Pr increases, the Q (x) increase and Cw f

decrease. From these tables, for a fixed Pr,  as x
increases,  i.e.  from  the  lower  stagnation point of the
sphere, x  0 and proceeds around the sphere up to the
point x = 120°, the values of  Q (x)  decrease  and Cw f

increase.  On  the other hand, the values of C  are higherf

for micropolar fluid (K = 2) than those for Newtonian fluid
(K = 0).

The graphs of (x, 0) and  for some values of

the Prandtl number Pr when  = 0.05, 0.1 and 0.2 are
plotted in Figures 2 and 3, respectively. It is found that, as

Pr increases, both (x, 0) and  decrease. For small

values of Pr(<<1), the value of (x, 0) and  is

higher than for large values of Pr(>>1) and it is seen that
the surface temperature is very sensitive to the Prandtl
number variations.

Figure 4 illustrates the variation of the wall
temperature (x, 0) with conjugate parameter  when Pr =
0.7, 1, 7 and K = 2. Furthermore, in order to get a
physically acceptable solution,  must be less than or
equals to some critical value, say , i.e. , dependingc c

on Pr. It can be seen from this figure that (x, 0) becomes
larger as  approaches the critical value of  = 0.5103c1

when Pr = 0.7,  = 0.5592 when Pr =1 and  = 1.019c2 c3

when Pr = 7.
Figures 5 to 7 illustrate the temperature (x, 0),

velocity  and angular velocity h(0, y) profiles of the

sphere for some values of , namely  = 0.05, 0.1, 0.2 when
Pr= 0.7 and K = 2, respectively. It is found that when K is
fixed, as  increases, the temperature, velocity and angular
velocity profiles increase.
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Fig. 7: Angular velocity profiles h(0, y) for some values Fig. 11: Temperature profiles, (x, y) at x = 0°, 60°, 90°
of  = 0.05, 0.1, 0.2 when Pr= 0.7 and K = 2 when Pr = 0.7, 7, K = 2 and  = 0.1

Fig. 8: Temperature  profiles, (0, x) when K = 0, 1, 2, 3,
Pr = 1 and  = 0.1

Fig. 9: Velocity  profiles,    when   K  = 0, 1, 2, 3,

Pr = 1 and  = 0.1

Fig. 10: Angular velocity profiles, h(0, y) when K = 0, 1, 2,
3, Pr = 1 and  = 0.1

Fig. 12: Velocity profiles,  at x = 0°, 60°, 90° when

Pr = 0.7, 7, K = 2 and  = 0.1

Fig. 13: Angular velocity profiles, h(x, y) at x = 0°, 60°, 90°
when Pr = 0.7, 7, K = 2 and  = 0.1

Figures 8  and 9  display  the  temperature (0,  y)
and velocity  profiles for some values of K, namely

K = 0, 1, 2, 3 when Pr = 1 and = 0.1, respectively. It is
found that when Pr is fixed, as K increases, both the
temperature and velocity profiles increase. Angular
velocity h(0, y) profiles, when K = 0, 1, 2, 3, Pr = 1 and  =
0.1 are plotted in Figure 10. These figures shows that the
angular velocity is completely negative for K = 0, while it
may be positive for K 0.

Figures 11 to 13 display the temperature, velocity and
angular velocity profiles at x = 0°, 60°, 90° when Pr = 0.7,
7, K = 2 and  = 0.1. From Figure 11, it is found that as Pr
and  x  increase,  the temperature profiles decrease and the
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thermal boundary layer thickness also decrease. This is To get a physically acceptable solution,  must be
because for small values of the Prandtl number Pr <<1, the
fluid is highly conductive. Physically, if Pr increases, the
thermal diffusivity decreases and this phenomenon leads
to the decreasing manner of the energy transfer ability
that reduces the thermal boundary layer. Furthermore, in
these figures shown that for fixed K, as Pr increases, the
velocity profiles decrease and the angular velocity
profiles decrease. In the same figures it has been found
that when Pr is fixed and x increases, the temperature,
velocity and angular velocity profiles increase.

CONCLUSIONS

In this paper, we have numerically studied the
problem of free convection boundary layer flow on a solid
sphere in a micropolar fluid with convective boundary
conditions (CBC). We are interested to see how the
material parameter K, the Prandtl number Pr and the
conjugate parameter  affect the flow and heat transfer
characteristics. We can conclude that (for the case of
(CBC):

When Pr and are fixed, as K increases, the value of
the wall temperature (0, y) increases but the skin

friction coefficient,  decreases. On other

hand, when K and are fixed, as Pr increases, the
heat transfer coefficient, , the skin friction

coefficient,  and the angular velocity

profiles, h(0, y) decrease but the heat transfer
coefficient  increases 

When K is fixed, an increase in  leads to an increase
of the wall temperature (0, y) skin friction coefficient

, temperature profiles (0, y) velocity profiles

 and angular velocity profiles h(0, y).

When Pr and are fixed, the values of C  are higherf

for micropolar fluids (K 0) than those  for a
Newtonian  fluid (K = 0);
When Pr is fixed and x increases, the temperature
profile, velocity profile and angular velocity profiles
increase;
When K and are fixed, as Pr increases, the values
of the local heat transfer coefficient increase and the
local skin friction coefficient decrease;

less than  depending on the Pr.c
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