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Abstract: In this paper, we implement the exp (-Φ(η))-expansion method to construct exact traveling wave 
solutions of the solitary wave equation in an unmagnatized dusty plasma and find out the approximate 
solution of the electrostatic wave potential equation. The procedure is simple, direct and constructive 
without the help of a computer algebra system. The obtained results show that the exp (-Φ(η))-expansion
method is straightforward and effective mathematical tool for nonlinear evolution equations in
mathematical physics and engineering. 
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INTRODUCTION

A solitary structure is a hump or dip shaped
nonlinear wave of permanent profile. To distinguish it 
from a soliton, we note that a soliton is a special type of 
solitary waves which preserve their shape and speed 
after interaction. It arises because of the balance
between the effects of the nonlinearity and the
dispersion (when the effect of dissipation is negligible 
in comparison with those of the nonlinearity and
dispersion). However, when the dissipative effects are 
comparable to or more dominant than the dispersive 
effects, one encounters shock waves. The small but 
finite amplitude solitary waves are governed by a KdV 
type equation, while the shock waves are described by a 
KdV-Burgers type equation. In the recent years, the 
exact traveling wave solutions of nonlinear partial
differential equations have been investigated by many 
authors who are interested in nonlinear phenomena
which exist in all fields including either the scientific 
works or engineering fields, such as fluid mechanics, 
solid-state physics, plasma physics, plasma waves,
chemical physics, elastic media, optical fibers,
atmospheric, oceanic phenomena, biology and so on. 
The research of traveling wave solutions of some
nonlinear evolution equations derived from such fields 
played an important role in the analysis of some
phenomena.  To  obtain  traveling wave solutions, many 

effective  methods  have  been  presented  in the 
literature, such as the Backlund transformation method 
[1], the Adomian decomposition method [2, 3], the
inverse  scattering  transform  [4], the sine-cosine
method [5], the Jacobi elliptic function expansion
method [6, 7], the Darboux transformation method [8], 
the complex hyperbolic function method [9, 10], the 
rank analysis method [11], the ansatz method [12, 13], 
the exp -functions method [14], the modified simple
equation method [15, 16], the (G′/G)-expansion method 
[17-26], the F-expansion method [27, 28], the
homogeneous balance method [29-31], the auxiliary 
equation method [32, 33], the He’s homotopy
perturbation method [34, 35], the exp (-ϕ(η))-expansion
method [36-38] and so on. 

The rest of the paper is organized as follows: In 
Section 2, we give the description of the exp (-ϕ(η))-
expansion method. In Section 3, we apply this method 
to the KdV-Burgers type equation in an unmagnatized 
dusty plasmas pointed out above; in section 4, physical 
explanations and in section 5 conclusions are given.

DESCRIPTION OF THE
exp (-∨(÷))-EXPANSION METHOD

Let us consider a general nonlinear PDE in the form

t x x x t t t xF(u,u ,u ,u ,u ,u , ) (1)
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where u = u(x,t) is an unknown function, F is a
polynomial in u(x,t) and its derivatives in which highest 
order derivatives and nonlinear terms are involved and 
the subscripts stand for the partial derivatives. In the 
following, we give the main steps of this method:

Step 1: We combine the real variables x and t by a 
complex variable η

u(x,t) u( )= η , x Vtη = ± (2)

where V is the speed of the traveling wave. The
traveling wave transformation (2) converts Eq. (1) into 
an ordinary differential equation (ODE) for u = u(η):

( u , u , u , u , )′ ′′ ′′′ℜ  (3)

where ℜ is a polynomial of u and its derivatives and the 
superscripts indicate the ordinary derivatives with
respect to η.

Step 2: Suppose the traveling wave solution of Eq. (3) 
can be expressed as follows:

iN

i
i 0

u( ) A(exp( ( )))
=

η = −Φ η∑ (4)

where Ai(0≤i≤N) are constants to be determined, such 
that AN≠0 and Φ = Φ(η) satisfies the following
ordinary differential equation:

( ) exp( ( )) exp( ( ))′Φ η = −Φ η + µ Φ η + λ (5)

Eq. (5) gives the following solutions:

Family 1: When µ ≠ 0, λ2-4µ>0

2
2 ( 4 )

( 4 )tanh( ( E))
2( ) ln( )

2

λ − µ
− λ − µ η+ − λ

Φ η =
µ

(6)

Family 2: When µ ≠ 0, λ2-4µ<0

2
2 (4 )

(4 )tan( ( E))
2( ) ln( )

2

µ − λ
µ − λ η+ − λ

Φ η =
µ

(7)

Family 3: When µ = 0, λ≠ 0 and λ2-4µ>0

( ) ln( )
exp( ( E)) 1

λ
Φ η = −

λ η + −
(8)

Family 4: When µ ≠ 0, λ≠ 0 and λ2-4µ = 0

2

2( ( E) 2)
( ) ln( )

( E)
λ η + +

Φ η = −
λ η+

(9)

Family 5: When µ = 0, λ = 0 and λ2-4µ = 0

( ) ln( E)Φ η = η+ (10)

Here,  E, λ, µ are constants to be determined latter 
and the positive integer N can be determined by
considering the homogeneous balance between the
highest order derivatives and the nonlinear terms
appearing in Eq. (3).

Step 3: We substitute Eq. (4) into Eq. (3) and then we 
account the function exp (-Φ(η)). As a result of this
substitution, we get a polynomial of exp (-Φ(η)). We 
equate all the coefficients of same power of exp (-Φ(η))
to zero. This procedure yields a system of algebraic 
equations whichever can be solved to find AN,……, V, 
λ, µ. Substituting the values of AN,……, V, λ, µ into 
Eq. (4) along with general solutions of Eq. (5)
completes the determination of the solution of Eq. (1).

SOLITARY WAVES SOLUTION OF 
THE KDV-BURGERS TYPE EQUATION IN

AN UNMAGNETIZED DUSTY PLASMA

In this section, we will apply the exp (-Φ(η))-
expansion method to construct many new and more 
general traveling wave solutions for the DIA shock 
waves in unmagnatized plasma. The governing
nonlinear equations for the DIA shocks in terms of 
normalized variable are [39]

(11)

(12)
and

(13)

where Ui is the ion fluid speed, ϕ is the electrostatic 
wave potential and  (in which µd is the 
kinematic viscosity). Here the time and space variables
are units of the ion plasma period  and electron 
Debye length , respectively. If we expand 

(14)

, (15)
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(16)

and  introduce  the  stretched  variables
and . Then we readily obtain the KdV-Burgers
equation of the form 

(17)
where

,
and

.

As v0>0 and n0>0, the sign of the coefficients a1, b1, c1
are determined by the sign of a.
Upon using the transformation 

(18)

where V are speed of travel, equation (17) is
transformed to

(19)

where   the   prime   denotes  differentiation  with
respect to ξ.
Eq. (19) is integrable, therefore, integrating, we obtain

(20)

where P is an integral constant which is to be
determined.

Taking the homogeneous balance between v2 and 
v” in eq. (20), we obtain N = 2. Therefore, the solution 
of Eq. (20) is of the form:

(21)

where A0, A1, A2 are constant to be determinate such 
that AN≠0.

Substituting eq. (21) into eq. (20) and then equating 
the coefficients of exp (-Φ(ξ)) to zero, we obtain

(22)

(23)

(24)

(25)

Solving these equations (22) to (25), we obtain

, ,
where

Substituting these values A0, A1, A2, in eq. (21), we 
obtain

(26)

Now substituting equations (6)-(10) into (26)
respectively, we get the following five traveling wave 
solutions of the third order KdV-Burgers equation.
When µ ≠ 0, λ2-4µ>0

(27)

where ξ = x+Vt and E is an arbitrary constant.
When µ ≠ 0, λ2-4µ<0

(28)

where ξ = x+Vt and E is an arbitrary constant.
When µ = 0, λ≠0 and λ2-4µ>0

(29)

where ξ = x+Vt and E is an arbitrary constant.
When µ ≠ 0, λ≠0 and λ2-4µ = 0

(30)

where ξ = x+Vt and E is an arbitrary constant.
When µ = 0, λ = 0 and λ2-4µ = 0
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Fig. 1: Solitary  wave  solution  v1(ξ)  when  a1 = 0.3, 
b1 = 0.5, c1 = 0.8, V = 1, µ = 2, λ = 1, E = 1 and 
0≤x, 0≤t

Fig. 2: Solitary  wave  solution  v2(ξ)  when  a1 = 0.3, 
b1 = 0.5, c1 = 0.8, V = 3, µ = 10, λ = 3, E = 1 
and 0≤x, 0≤t

(31)

where ξ = x+Vt and E is an arbitrary constant. 
Therefore the approximate solution of the

electrostatic wave potential equation can be written as

(32)

PHYSICAL EXPLANATIONS

In this section we will discuss the physical
explanations and graphical representation of the above 
determined five families of solutions.

Explanations: The introduction of dispersion without 
introducing nonlinearity destroys the solitary wave as 
different Fourier harmonics start propagating at
different group velocities. On the other hand,
introducing nonlinearity without dispersion also
prevents  the  formation  of  solitary waves, because the

Fig. 3: Solitary  wave  solution  v3(ξ)  when  a1 = 0.3, 
b1 = 0.5, c1 = 0.8, V = 2, µ = 0, λ = 3, E = 1 and 
0≤x, 0≤t

Fig. 4: Solitary  wave  solution  v4(ξ)  when  a1 = 0.3, 
b1 = 0.5, c1 = 0.8, V =-0.5, µ = 3, λ = 4, E = 1 
and 0≤x, 0≤t

Fig. 5: Solitary  wave  solution  v5(ξ)  when  a1 = 0.3, 
b1 = 0.5, c1 = 0.8, V =-10, µ = 0, λ = 0, E = 5 
and 0≤x, 0≤t

pulse energy is frequently pumped into higher
frequency modes. However, if both dispersion and
nonlinearity are present, solitary waves can be
sustained. Similarly to dispersion, dissipation can also 
give rise to solitary waves when combined with
nonlinearity. Hence it is interesting to point out that the 
delicate  balance  between  the nonlinearity effect of uux
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and the dissipative effect of uxx and uxxx give rise to 
solitons, that after a fully interaction with others the 
solitons come back retaining their identities with the 
same speed and shape. The KdV-Burgers equation has 
solitary wave solutions that have exponentially
decaying wings. If two solitons of the KdV-Burgers
equation collide, the solitons just pass through each 
other and emerge unchanged. For special values of the 
parameters solitary wave solutions are originated from 
the obtained exact solutions.

Solitons are special kinds of solitary waves. The 
soliton solution is a specially localized solution, hence 
u ( ) , u ( ) , u ( ) 0′ ′′ ′′′ξ ξ ξ →  as ξ→±∞ , where ξ = x+Vt.
Solitons have a remarkable property that it keeps its 
identity upon interacting with other solitons.

Graphical representation of the solutions: The
graphical illustrations of the solutions of the KdV-
Burgers type equation are given below in the figures 
(Fig.1 to 5) with the aid of Maple.

CONCLUSION

In this paper, the exp (-Φ(η))-expansion method 
has been successfully applied to find the exact solutions 
for nonlinear partial differential equations such as the 
KdV-Burgers type equation in unmagnatized dusty
plasmas. Also find the electrostatic wave potential in 
equation (32). The results show that the exp (-Φ(η))-
expansion method is a powerful mathematical tool to 
solve the solitary wave equation in an unmagnatized 
dusty plasmas; it is also a promising method to solve 
other nonlinear equations.
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