Certain New Classes of Meromorphic Functions Associated with Convolution Operator

Zahid Shareef, Saqib Hussain and Maslina Darus

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia

Department of Mathematics, COMSATS Institute of IT, Abbottabad, Pakistan

Abstract: In this paper, making use of a linear operator we introduce and study certain new classes of meromorphic functions. We derive some inclusion relationships, coefficient bounds and a radius problem. These classes contain many known classes as special cases.

Key words: Meromorphic functions, hadamard product, close-to-convex functions

INTRODUCTION

Let M denotes the class of meromorphic functions of the form

\[f(z) = \frac{1}{z} + \sum_{j=0}^{\infty} a_j z^j \]

which are analytic in the punctured open unit disc \(D = \{ z \in \mathbb{C} : 0 < |z| < 1 \} \). Further, let \(P_k(\gamma) \) be the class of functions \(p(z) \) analytic in \(E = D \cup \{0\} \) satisfying

\[\frac{\int_0^{2\pi} |p(z) - \gamma|}{1 - \gamma} d\theta \leq k \pi \]

(1.2)

where \(z = re^{\theta}, k \geq 2, 0 \leq \gamma < 1 \). This class was introduced by Padmanabhan and Parvatham [7]. For \(\gamma = 0 \) we obtain the class \(P_k \) defined by Pinchuk [8] and for \(k = 2, P_2(\gamma) = P(\gamma) \) is the class with real part greater than \(\gamma \).

Also from (1.2) it can be seen that \(p \in P_k(\gamma) \) if and only if

\[p(z) = \frac{k+1}{4} p(z) - \frac{k-1}{2} p(z) \]

where, \(p, p_2(\gamma) = P(\gamma) \) for \(z \in E \). The class is closed under the convolution (Hadamard product) denoted and defined by

\[(f * g)(z) = \frac{1}{z} + \sum_{j=0}^{\infty} b_j z^j \]

In [1] Aouf et al. defined a convolution operator

\[\theta_k\left((\alpha_n, A_n), (\beta_n, B_n)_j \right) : M \rightarrow M \] as follows:

\[\theta_k\left((\alpha_n, A_n), (\beta_n, B_n)_j \right) f(z) = \frac{1}{z} + \sum_{j=0}^{\infty} \frac{\Gamma(\lambda + j + 1)_{n+1} \Gamma(\beta_n + (j+1)B_n)_j}{\Gamma(\lambda)_n \Gamma(\alpha_n + (j+1)A_n)_j} \]

(1.3)

where \(\lambda > 0, \in D \). For convenience we write

\[\theta_k(\alpha_n, A_n) = \theta_k\left((\alpha_n, A_n), (\beta_n, B_n)_j \right) \]

From (1.3), it can be easily verified that

\[A \theta_k(\alpha_n, A_n) f(z) = \alpha_n \theta_k(\alpha_n) f(z) - (\alpha_n + A_n) \theta_k(\alpha_n + 1) f(z) \]

(1.4)

and

\[z \theta_k(\alpha_n, A_n) f(z) = \lambda \theta_k(\alpha_n) f(z) - \theta_k(\alpha_n, A_n) \theta_k(\alpha_n) f(z) \]

(1.5)

Furthermore, for \(c > 0 \) the generalized Bernardi operator for meromorphic functions is defined as

\[J_c f(z) = \frac{c}{z^{c+1}} \int_0^{\frac{1}{z}} f(t) dt \]

(1.6)

From (1.6), we have

\[(c+1) J_c f(z) + z J_c f(z) = cf(z), z \in D \]

(1.7)
Many interesting classes of meromorphic functions have been recently studied by many authors [4, 5].

Using the operator $\theta^{\lambda}(\alpha)$, we define some classes of meromorphic functions as follow:

Definition 1.1: Let $f(z) \in M, \lambda > 0, 0 \leq \gamma < 1, z \in D$, then $f(z) \in MS(\alpha, \lambda, k, \gamma)$ if and only if

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) f(z)} \in P_1^\gamma$$

Definition 1.2: Let $f(z) \in M, \lambda > 0, 0 \leq \gamma < 1, z \in D$, then $f(z) \in MC(\alpha, \lambda, k, \gamma)$ if and only if

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} \in P_1^\eta$$

We note that

$$f(z) \in MC(\alpha, \lambda, k, \gamma) \Rightarrow -zf'(z) \in MS(\alpha, \lambda, k, \gamma)$$

Definition 1.3: Let $f(z) \in M, \lambda > 0, 0 \leq \gamma, \eta < 1, z \in D$, then $f(z) \in MS^2(\alpha, \lambda, k, \gamma, \eta)$ if and only if there exists $g(z) \in MS(\alpha, \lambda, 2, \gamma)$ such that

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} \in P_1^\eta$$

Definition 1.4: Let $f(z) \in M, \lambda > 0, 0 \leq \gamma, \eta < 1, z \in D$, then $f(z) \in MS^2(\alpha, \lambda, k, \gamma)$ if and only if there exists $g(z) \in MC(\alpha, \lambda, 2, \gamma)$ such that

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} \in P_1^\eta$$

We choose a suitable function $\Phi(z)$ such that

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = H(z)$$ (3.1)

Using (1.5) and (3.1) we obtain

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = H(z) + \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$ (3.2)

We choose a suitable function $\Phi(z)$ such that

$$\Phi(z) = \frac{1}{\lambda + 1} \left[\frac{1}{z} + \sum_{j=1}^{\infty} \frac{1}{z^j} \right] + \frac{\lambda}{\lambda + 1} \left[\frac{1}{z} + \sum_{j=1}^{\infty} \frac{1}{jz^j} \right]$$

then

$$H(z) = \Phi(z) = \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$ (3.3)

Let

$$H(z) = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) h_2(z)$$ (3.4)

From (3.2)-(3.4), we have

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) + \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$

Lemma 1.1: [6] Let $u = u_1 + iu_2$ and $v = v_1 + iv_2$ and let $\Psi(u, v)$ be a complex valued function satisfying the conditions:

(i) $\Psi(u, v)$ is continuous in $D \subseteq \mathbb{C}^2$.
(ii) $(1,0) \in D$ and $\Re \Psi(1,0) > 0$.
(iii) $\Re \Psi(iu_2, v_1) > 0$ whenever $(iu_2, v_1) \in D$ and $v_1 \leq -\frac{1}{2}(1 + u_2^2)$.

If $h(z)$ is a function analytic in E such that $(h(z), zh'(z)) \in D$ and $\Re \Psi(h(z), zh'(z)) > 0$ for $z \in \mathbb{E}$, then $\Re h(z) > 0$ in E.

Lemma 1.2: Let $h(z) \in P$, for $z \in \mathbb{E}$. Then

$$|zh'(z)| \leq \frac{2\Re e h(z)}{1 - |z|^2} [2]$$

$$\frac{1 - |z|^2}{1 + |z|^2} \leq \Re h(z) \leq \frac{1 + |z|^2}{1 - |z|^2} [9]$$

MAIN RESULTS

Theorem 3.1: Let $f(z) \in M$. Then

$MS(\alpha, \lambda + 1, k, \gamma) \subset MS(\alpha, \lambda, k, \gamma)$

Proof: First we prove

$MS(\alpha, \lambda + 1, k, \gamma) \subset MS(\alpha, \lambda, k, \gamma)$

Let $f(z) \in MS(\alpha, \lambda + 1, k, \gamma)$ and set

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = H(z)$$ (3.1)

Using (1.5) and (3.1) we obtain

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = H(z) + \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$ (3.2)

We choose a suitable function $\Phi(z)$ such that

$$\Phi(z) = \frac{1}{\lambda + 1} \left[\frac{1}{z} + \sum_{j=1}^{\infty} \frac{1}{z^j} \right] + \frac{\lambda}{\lambda + 1} \left[\frac{1}{z} + \sum_{j=1}^{\infty} \frac{1}{jz^j} \right]$$

then

$$H(z) = \Phi(z) = \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$ (3.3)

Let

$$H(z) = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) - \left(\frac{k}{4} - \frac{1}{2} \right) h_2(z)$$ (3.4)

From (3.2)-(3.4), we have

$$-\frac{z(\theta^\lambda(\alpha) f(z))'}{\theta^\lambda(\alpha) g(z)} = \left(\frac{k}{4} + \frac{1}{2} \right) h_1(z) + \frac{zH'(z)}{-H(z) + (\lambda + 1)}$$
Since \(f(z) \in \text{MS}(\alpha, \lambda + 1, k, \gamma) \), therefore

\[
h_i(z) = \frac{z_{\alpha}(z)}{-h_i(z) + (\lambda + 1)} \in \mathbb{P}(\gamma) \text{ for } i = 1, 2; \ z \in \mathbb{E}.
\]

Let \(h_i(z) = \gamma_i + (1 - \gamma_i)p_i(z) \) for \(i = 1, 2 \). Then

\[
\frac{1}{1 - \gamma_i} \left[(\gamma_i - 1) + (1 - \gamma_i)p_i(z) + \frac{(1 - \gamma_i)x_{\alpha}(z)}{-1 - \gamma_i}p_i(z) + (1 + \lambda - \gamma_i) \right] \in \mathbb{P}
\]

for \(i = 1, 2; \ z \in \mathbb{E} \).

We formulate a functional \(\Psi(u, v) \) by taking \(u = u_1 + iu_2 = p(z) \) and \(v = v_1 + iv_2 = z_{\alpha}(z) \), then

\[
\Psi(u, v) = \frac{1}{1 - \gamma_i} \left[(\gamma_i - 1) + (1 - \gamma_i)u + \frac{(1 - \gamma_i)v}{(1 - \gamma_i)u + (1 + \lambda - \gamma_i)} \right]
\]

The first two conditions of Lemma 2.1 are obviously satisfied for \(\Psi(u, v) \) For the third condition, we proceed as follows:

\[
\text{Re} \Psi(iu, v_i) = \frac{A + Bu_i^2}{2C}
\]

where

\[
A = 2(\gamma_i - 1)(1 + \lambda - \gamma_i)^2 - (1 - \gamma_i)(1 + \lambda - \gamma_i) \]

\[
B = 2(\gamma_i - 1)(1 - \gamma_i)^2 - (1 - \gamma_i)(1 + \lambda - \gamma_i) \]

\[
C = \left[(1 + \lambda - \gamma_i)^2 + (1 - \gamma_i)^2u_i^2 \right](1 - \gamma)
\]

Theorem 3.2: Let \(f(z) \in \mathbb{M} \). If \(f(z) \in \text{MS}(\alpha, \lambda, k, \gamma) \) then

\(Jf(z) \in \text{MS}(\alpha, \lambda, k, \gamma) \).

Proof: Let \(f(z) \in \text{MS}(\alpha, \lambda, k, \gamma) \) and set

\[
\frac{zJ_1(\theta_{\alpha}(\alpha) f(z))'}{J_1(\theta_{\alpha}(\alpha) f(z))} = H(z)
\]

where \(H(z) \) is analytic in \(\mathbb{E} \) and \(H(0) = 1 \). Using (1.7) and (3.6) we get

\[
\frac{z(\theta_{\alpha}(\alpha) f(z))'}{\theta_{\alpha}(\alpha) f(z)} = H(z) + \frac{zH'(z)}{-H(z) + (c + i)}
\]

Now using the same steps as in Theorem 2.1, we can prove that \(Jf(z) \in \text{MS}(\alpha, \lambda, k, \gamma) \), which completes the proof.

Theorem 3.3: If \(f(z) \) defined by (1.1) be in the class \(\text{MS}(\alpha, \lambda, k, \gamma) \) then

\[
|k_j| \leq \frac{(1 + \lambda)^2}{j!\gamma^2}, \ j \in \mathbb{N}
\]

Proof: Let \(f(z) \in \text{MS}(\alpha, \lambda, k, \gamma) \), then

\[
\frac{z(\theta_{\alpha}(\alpha) f(z))'}{\theta_{\alpha}(\alpha) f(z)} = H(z) \in \mathbb{P}(\gamma)
\]

where \(H(z) \) is analytic in \(\mathbb{E} \) and \(H(0) = 1 \). Let \(H(z) \) be of the form

\[
H(z) = 1 + \sum_{j=0}^{\infty} c_j z^j, \ z \in \mathbb{E}
\]

From (1.5), (3.7) and (3.8), we obtain

\[
\sum_{j=1}^{\infty} j\xi_p z^j = -\left[\sum_{j=1}^{\infty} c_j z^j \right] - \left[\sum_{j=1}^{\infty} \xi_p z^j \right] \left[\sum_{j=1}^{\infty} c_j z^j \right], \ c_0 = 1
\]

By using Cauchy's product formula [3] for the power series, we obtain

\[
\sum_{j=1}^{\infty} j\xi_p z^j = -\left[\sum_{j=1}^{\infty} c_j z^j \right] - \sum_{j=1}^{\infty} \xi_p z^j c_j + z^j
\]

Equating the coefficients of \(z^j \) on both sides, we have
\[
\sum_{\nu=0}^{m} c_{j\nu} \zeta_{j} = c_{j1} + \sum_{\nu=0}^{m} c_{j\nu} \zeta_{j\nu},
\]

Since \(H(z) \in P_{k}(\gamma) \), we have \(|c_{j}| \leq k(1-\gamma) \). This implies

\[
|b_{j}| \leq \frac{k(1-\gamma)}{j_{\zeta_{j}}} \left[1 + \sum_{\nu=0}^{m} |b_{j\nu}| \right], j \in \mathbb{N}
\]

By using induction on \(j \), we obtain

\[
|b_{j}| \leq \frac{(1+\zeta_{j})}{j_{\zeta_{j}}} \left[k(1-\gamma) \right], j \in \mathbb{N}
\]

This completes the proof.

Theorem 3.4: Let \(f(z) \in M \). If \(f(z) \in MS(\alpha, \lambda, k, \gamma) \), then

\[
f(z) \in MS(\alpha, \lambda + 1, k, \gamma)
\]

for \(|z| < r_{0} \), where \(r_{0} \) is given by

\[
\tau_{j} = \frac{\lambda\left(2\lambda \gamma - 2\lambda - \gamma^{2}\right)}{\gamma + \sqrt{\lambda^{2} + \lambda(2-2\gamma + \gamma)}}
\]

Proof: Let \(F(z) = \psi^{*}f \). Let \(f(z) \in MS(\alpha, \lambda, k, \gamma) \), then

\[
\frac{z(\theta_{\zeta_{j}}(f(z)))^{*}}{\theta_{\zeta_{j}}(f(z))} = H(z)
\]

where \(H(z) \) is analytic in \(E \) and \(H(0) = 1 \). Using (1.5) and (3.10) we obtain

\[
\frac{z(\theta_{\zeta_{j}}(f(z)))^{*}}{\theta_{\zeta_{j}}(f(z))} = H(z) + \frac{zh(z)}{H(z) + (\lambda + 1)}
\]

Rearranging the terms, we have

\[
\frac{1}{1-\gamma} \left[\frac{z(\theta_{\zeta_{j}}(f(z)))^{*}}{\theta_{\zeta_{j}}(f(z))} - \gamma \right] = \left(\frac{k}{4} + \frac{1}{2} \right) \left[h_{1}(z) + \frac{\lambda_{h}(z)}{-((1-\gamma)(1+z^{2})+(\lambda + 1))} \right] - \left(\frac{k}{4} + \frac{1}{2} \right) \left[h_{2}(z) + \frac{\lambda_{h}(z)}{-((1-\gamma)(1+z^{2})+(\lambda + 1))} \right]
\]

Now, for \(i = 1,2 \), we use Lemma 2.2, with \(|z| = r_{0} \), to have

\[
\Re \left[\frac{zh_{i}(z)}{1-((1-\gamma)h_{i}(z) + \gamma) + (\lambda + 1)} \right] \geq \Re \left(\frac{2r}{1-r^{2}} - \lambda + 2r + (2-2\gamma + \gamma)r^{2} \right)
\]

The right side of above inequality is positive if \(|z| < r_{0} \), where \(r_{0} \) is given by (3.9).

Theorem 3.5: Let \(f(z) \in M \). Then

\[
MC(\alpha, \lambda + 1, k, \gamma) \subset MC(\alpha, \lambda, k, \gamma) \subset MC(\alpha + 1, \lambda, k, \gamma)
\]

Proof: Let \(f(z) \in MC(\alpha, \lambda + 1, k, \gamma) \), then

\[
-zf(z) \in MS(\alpha, \lambda + 1, k, \gamma)
\]

We prove

\[
f(z) \in MC(\alpha, \lambda, k, \gamma)
\]

\[
MC(\alpha, \lambda + 1, k, \gamma) \subset MC(\alpha, \lambda, k, \gamma)
\]

Theorem 3.6: Let \(f(z) \in M \). Then

\[
MS(\alpha, \lambda + 1, k, \eta) \subset MS(\alpha, \lambda, k, \eta)
\]

Proof: First we prove

\[
MS(\alpha, \lambda + 1, k, \eta) \subset MS(\alpha, \lambda, k, \eta)
\]
Let \(f(z) \in \text{MS}^r(\alpha, \lambda, k, \eta) \) and set
\[
-\frac{z(\theta_1(\alpha_1) f(z))'}{\theta_1(\alpha_1) g(z)} = H(z)
\]
(3.13)

Using (1.5) and (3.13) we obtain
\[
-\frac{z(\theta_2(\alpha_2) f(z))'}{\theta_2(\alpha_2) g(z)} = H(z) + \frac{z H'(z)}{-M(z) + (\lambda + 1)}
\]
where
\[
M(z) = -\frac{z(\theta_2(\alpha_2) g(z))'}{\theta_2(\alpha_2) g(z)}
\]

Since \(g(z) \in \text{MS}(\alpha, \lambda, 2, \gamma) \), therefore
\[
M(z) = \gamma + (1 - \gamma) m(z),\text{ where } m(z) \in \mathbb{P}
\]
(3.15)

Let
\[
H(z) = \left(\frac{k}{4} + \frac{1}{2}\right) h_i(z) - \left(\frac{k}{4} - \frac{1}{2}\right) h_2(z)
\]
(3.16)

From (3.14)-(3.16), we obtain
\[
-\frac{z(\theta_2(\alpha_2) f(z))'}{\theta_2(\alpha_2) g(z)} = \left(\frac{k}{4} + \frac{1}{2}\right) h_i(z) + \frac{zh_i'(z)}{(\lambda + 1 - \gamma - (1 - \gamma) m(z))}
\]
(3.17)

Since \(f(z) \in \text{MS}^r(\alpha, \lambda, 1, k, \eta) \), therefore (3.17) implies that
\[
h_i(z) + \frac{zh_i'(z)}{(\lambda + 1 - \gamma - (1 - \gamma) m(z))} \in \mathbb{P}(\eta) \text{ for } i = 1, 2; z \in \mathbb{E}
\]

Let \(h_i(z) = \eta_i + (1 - \eta_i) p_i(z) \) for \(i = 1, 2 \).

Then
\[
\left[(\eta_i - \eta) + (1 - \eta_i) p_i(z) + \frac{(1 - \eta_i) z p_i'(z)}{(\lambda + 1 - \gamma) - (1 - \gamma) m(z)} \right] \in \mathbb{P}
\]
for \(i = 1, 2; z \in \mathbb{E} \).

We formulate a functional \(\Psi(u,v) \) by taking \(u = u_i + i u_2 = p(z) \) and \(v = v_i + i v_2 = z p_i(z) \), then
\[
\Psi(u,v) = (\eta_i - \eta) + (1 - \eta_i) u + \frac{(1 - \eta_i) v}{(\lambda + 1 - \gamma) - (1 - \gamma) m(z)}
\]

The first two conditions of Lemma 2.1 are obviously satisfied for \(\Psi(u,v) \). For the third condition, we proceed as follows:

\[
\Psi(iu, v_i) = (\eta_i - \eta) + (1 - \eta_i) iu + \frac{(1 - \eta_i) v_i}{(\lambda + 1 - \gamma) - (1 - \gamma) m(z)}
\]

Let \(m(z) = m_1 + im_2 \), after rationalizing the expression, we obtain
\[
\text{Re} \Psi(iu, v_i) = (\eta_i - \eta) + \frac{(1 - \eta_i) [(\lambda + 1 - \gamma) - (1 - \gamma) m_1]}{[(\lambda + 1 - \gamma) - (1 - \gamma) m_1] + [(1 - \gamma) m_2]}
\]

From \(v_i \leq -\frac{1}{2}(1 + u_i^2) \), we have
\[
\text{Re} \Psi(iu, v_i) \leq \frac{A + B u_i^2}{2C}
\]
where
\[
A = 2(\eta_i - \eta)^2 \left[(\lambda + 1 - \gamma) - (1 - \gamma) m_1 \right]^2 + [(1 - \gamma) m_2] \]

\[
B = -(1 - \eta_i) [(\lambda + 1 - \gamma) - (1 - \gamma) m_1]
\]

\[
C = [(\lambda + 1 - \gamma) - (1 - \gamma) m_1]^2 + [(1 - \gamma) m_2]^2 \geq 0
\]

We note that \(\text{Re} \Psi(iu, v_i) \leq 0 \) if \(A \leq 0 \) and \(B \leq 0 \). From \(A \leq 0 \), we obtain
\[
2\eta_i \left[(\lambda + 1 - \gamma) - (1 - \gamma) m_1 \right] + [(1 - \gamma) m_2] \]
\[
\eta_i = \frac{2}{2(\lambda + 1 - \gamma) - (1 - \gamma) m_1} \left[(\lambda + 1 - \gamma) - (1 - \gamma) m_1 \right] + [(1 - \gamma) m_2] \]

By virtue of Lemma 2.1, we see that \(p_i \in \mathbb{P}, \text{ for } i = 1, 2 \) and \(z \in \mathbb{E} \). Hence \(h_i(z) \in P(\eta_i) \) which implies \(H(z) \in P(\eta_1) \) and consequently \(f(z) \in \text{MS}(\alpha, \lambda, k, \gamma, \eta) \).

REFERENCES

