On Monogeneity of Cyclic Quartic Fields of Prime Conductor

Mamoona Sultan, Toru Nakahara and Inayat Ali Shah

National University of Computer and Emerging Sciences [NUCES], Peshawar Campus, 160-Industrial Estate, Hayatabad, Khyber Pakhtunkhwa [K.P.K.], The Islamic Republic of Pakistan

Abstract: In this paper we want to give a new proof for non-monogenesis of any cyclic quartic fields K over the rationals Q of prime conductor congruent 1 modulo 4 except for the 5th cyclotomic field Q(exp(2πi/5)). This phenomenon was once proved using the Gauss sum attached to a quartic character by the second author. For Hasse's problem to determine whether an algebraic number field whose ring of integers has a power integral basis or not, Y. Motoda and the second author proved that infinitely many 2-elementary abelian fields with degree 8 have no power integral basis by solving Diophantine equations associated to seven quadratic subfields of an octic field L except for the 24th cyclotomic field Q(exp(2πi/24)). Our emphasis is applying a single simultaneous linear Diophantine equation to give a totally different and most succinct proof rather than the previous one for non-monogenesis of cyclic quartic fields K with prime conductor.

Key words: Non-monogeneity . cyclic quartic field . linear Diophantine equation . Hasse's conductor-discriminant theorem

INTRODUCTION

The characterization for an algebraic number field K whether the ring Z_K of integers of K has a power integral basis or not is known as Hasse's problem. For an algebraic number field tower Q⊂F⊂L over the field Q of rational numbers with the rings Z_F of integers in F and ring Z_L of integers in L, it is said that a field L is relatively monogenic in the relative field extension F/L of degree n if Z_L has a power integral basis \[\theta \in \mathbb{Z}_F \] over Z_F, namely Z_L coincides with the Z_F module \[\mathbb{Z}_F \cdot \theta \] of rank n. For the case of F = Q, we say that L is monogenic or that the ring Z_F has a power integral basis, if Z_L = Z⟦θ⟧ holds for an integer \(\theta \in \mathbb{Z} \).

Let \(\kappa_n \) be a cyclotomic field Q(\(\zeta_n \)) with a primitive root \(\zeta_n = \exp(2\pi i/n) \) for \(n \geq 3 \). \(\kappa_n \) and \(\kappa_n^* \) denote the maximal real subfield Q(\(\eta_n^* \)) with \(\eta_n^* = \zeta_n + \zeta_n^{-1} \) and a maximal imaginary subfield Q(\(\eta_n^* \)) with \(\eta_n^* = \zeta_n - \zeta_n^{-1} \) for \(n \geq 4 \) and 4|n respectively. Then \(\kappa_n \), \(\kappa_n^* \) and \(\kappa_n^* \) are monogenic, namely their rings \(\mathbb{Z}_{\kappa_n} \), \(\mathbb{Z}_{\kappa_n^*} \) and \(\mathbb{Z}_{\kappa_n^*} \) of integers have power integral bases \(\mathbb{Z}[\zeta_n] \), \(\mathbb{Z}[\eta_n^*] \) and \(\mathbb{Z}[\eta_n^*] \), respectively [1-3].

In the case of abelian quartic field K, we found many work to determine the monogeneity of K for cyclic extensions and biquadratic ones.

For an algebraic number field F, index Ind_F(\(\alpha \)) of an integer \(\alpha \) in F is defined by \(\sqrt{d_F(\alpha)} \) with the field discriminant \(d_F \) of F and the discriminant \(d_F(\alpha) \) of a number \(\alpha \) [3]. Certain biquadratic fields K whose minimum indices are greater than 1 and whose integral bases are explicitly determined by second author [4]. The field index Ind_F \(\frac{d_F}{\alpha} \) and minimum index \(m_F \) is defined by \(\gcd\{\text{Ind}_F(\alpha); \alpha \in \mathbb{Z}_F\} \) and \(m_F = \min \{\text{Ind}_F; \alpha \in \mathbb{Z}_F\} \).

M.-N. Gras and F. Tanoé contributed to Hasse's problem by providing a necessary and sufficient condition for the monogeneity of biquadratic field K = Q(\(\sqrt{m}, \sqrt{n} \)) using a diophantine equation of degree 4[5]. Their work is explored by Y. Motoda proving that there exist infinitely many monogenic biquadratic fields with some parameters [6]. The characterization of any 2-elementary abelian octifield

\[F = Q(\sqrt{mn}, \sqrt{d}); \]

with

\[mn = 3(\text{mod}4); d = 2(\text{mod}4); d > 0, \ell = 1(\text{mod}4) \]

where \(d/mn \) is square free, is proved to be non-monogenic using the seven linear equations of unit coefficients corresponding to seven quadratic subfield of F except for 24th cyclotomic field Q(exp(2πi/24)).
F = \sqrt{-1}, \sqrt{2}, \sqrt{-3}) where F coincide with the 24th cyclotomic field \(Q(\zeta_{24}) \) [7-9].

Let \(\zeta = \exp(2\pi i/n) \) and \(\tau(\chi) = \sum_{\chi(n)} \chi(n) \zeta^x \) be the Gauss sum attached to \(\chi \) of conductor \(n \), where \(G \) be the Galois group of a cyclotomic extension field \(k_{n}/Q \) and \(X = \langle \chi \rangle \) be the corresponding character group of \(G \) generated by \(\chi \). In 1982, the second author proved that the cyclic quartic field \(K \) with prime conductor \(p \) over \(Q \), is non-monogenic except for \(K = k_{5} \) by using Gauss sum \(\tau(\psi) \) attached to the quartic character \(\psi \) of conductor \(p \) as the main tool for the proof [10]. The aim of this paper is to give a new and simple proof of the non-monogeneity of the above cyclic quartic fields \(K \) of prime conductor \(p \) by making use of a single Diophantine equation with unit coefficients in the quadratic subfield \(Q(\sqrt{p}) \) of \(K \). It seems that this idea can be applied to determine the monogeneity of an abelian but non-cyclic octic extension field \(L \) including a cyclic quartic subfield with \([L:Q] = 8 \).

PRELIMINARY RESULTS

We start with the following established lemmas and propositions available for our new proof.

Lemma 2.1: [11] (Hasse’s conductor- discriminant formula). Let \(K \) be an abelian number field associated to the group \(X \) of Dirichlet characters. Then the discriminant of \(K \) is given by

\[
d(K) = (-1)^{\frac{d}{2}} \prod_{\chi \in X} f_{\chi} \]

where \(f_{\chi} \) denotes conductor of \(\chi \) and \(r_{2} \) the number of the pair of complex conjugate field of \(K \).

Lemma 2.2: (Chain Theorem). For an extension field tower \(Q \subset k \subset K \), \(d_{k} \) and \(d_{k}/k \) be the discriminant of \(K \), \(k \) and the relative discriminant of \(K \) over \(k \), respectively. Then we have:

\[
d_{k} \cdot d_{k}/k = (-1)^{\frac{d_{k}}{2}} \prod_{\chi \in X} f_{\chi} \]

Here for a number \(\alpha \in K \) and an ideal \(\mathfrak{A} \) of \(K \), \(\alpha \subset \mathfrak{A} \) denote both side are equal to each other as ideals.

The next claim is a sufficient criterion for the non-monogeneity of a Galois extension field.

Lemma 2.3: [2] Let \(\ell \) be a prime number and \(F/Q \) be a Galois extension of degree \(n = ef \) with ramification index \(e \), the relative degree \(f \) and the decomposition degree \(g \) with respect to \(\ell \). If one of the following two conditions is satisfied, then the ring \(\mathbb{Z}_f \) of integers in \(F \) has no power integral basis, i.e., \(F \) is non-monogenic.

1. \(e\ell < n \) and \(f = 1 \);
2. \(e\ell \leq n + e - 1 \) and \(f \geq 2 \)

The following proposition can be proved directly by applying Lemma 2.1 for seven quadratic subfields of \(F \).

Proposition 2.4: [7] Let \(F \) be a 2-elementary abelian extension field \(Q(\sqrt{mn}, \sqrt{dn}, \sqrt{d}, \sqrt{m}, \sqrt{n}) \) with \(d, m, n, mn = 3, d = 2, dm, n, \ell = 1 \) (mod 4), \(d > 0 \) and \(\mathfrak{d} \) is square free. Then we have \(d_{F} = 2^{6}(\mathfrak{d} \mathfrak{m})^{4} \).

For the simplicity we restrict ourselves that \(d_{1}m_{1}n_{1} = 1 \). Let \(G = \langle \alpha, \beta, \gamma, \delta \rangle \) be the Galois group of \(F/Q \) with the identity \(\iota \). Then we have

Remark 2.5: It holds that

\[
\begin{align*}
k_{\alpha,\beta} &= Q(\sqrt{mn}) = k_{1}, \quad k_{\alpha,\gamma} = Q(\sqrt{dn}) = k_{2}, \\
k_{\alpha,\delta} &= Q(\sqrt{d}) = k_{3}, \quad k_{\alpha,\gamma} = Q(\sqrt{dm}) = k_{4}, \\
k_{\alpha,\delta} &= Q(\sqrt{m}) = k_{5}, \quad k_{\gamma,\delta} = Q(\sqrt{dn}) = k_{6}, \\
k_{\gamma,\delta} &= Q(\sqrt{m}) = k_{7}.
\end{align*}
\]

In [7], an infinite family of non-monogenic octic 2-elementary abelian extension fields was found. The proof of Proposition 2.6 developed in [7] is a basic tool to prove our theorem.

Proposition 2.6: [7] Let \(F \) be an octic field \(Q(\sqrt{mn}, \sqrt{dn}, \sqrt{d}) \) with \(dmn \) is square free and

\[
G = \langle \alpha, \beta, \gamma, \delta \rangle \subset \langle \alpha, \beta, \gamma, \delta \rangle.
\]

the Galois group of \(F/Q \). For \(\lambda, \mu \in G \) and \(k_{\lambda, \mu} \) be the fixed quadratic subfield and the fixed quartic one of \(F \) by the subgroups \(H_{\lambda, \mu} = \langle \lambda, \mu \rangle \) and \(H_{\lambda, \mu} = \langle \lambda, \mu \rangle \) of \(G \) respectively. If \(F \) is monogenic, then the following seven simultaneous equations corresponding to the quadratic subfields \(k_{\lambda, \mu} \subset (\lambda, \mu \in G) \) hold;

\[
d_{F/k_{\lambda, \mu}} E_{1} + d_{F/k_{\lambda, \mu}} E_{2} + d_{F/k_{\lambda, \mu}} E_{3} = 0, \quad E_{i} \in U_{k_{\lambda, \mu}} \quad (1 \leq j \leq 3)
\]
where \(d_{F/K} \) and \(U_{k,h} \) denote the relative discriminant \(\sqrt{d_{F/K}} \) of \(F/K \) and the unit group of an imaginary or a real quadratic field \(k_{h,m} \), respectively.

Since all the coefficients \(E_{ij} \) with \(i \neq 3 \) and \(2E_{ij} \) with \(i = 3 \) in the above seven equations belong to \(\mathbb{Z}[1,D] \) for \(D = mn, dn, dm, \ldots, k_{h,m} \), it is enough to investigate a behavior on powers of units in the ring \(\mathbb{Z}[\sqrt{D}] \).

Proposition 2.7: [7] Let \(\varepsilon = t + u_1 \sqrt{D} = t + \sqrt{Du_1^2} \) be a unit in the ring \(\mathbb{Z}[\sqrt{D}] \) of a real quadratic field \(\mathbb{Q}(i) \) and \(\varepsilon' = t_u + u_1 \sqrt{D} = T + \sqrt{Du_1^2} \) and

\[
E = E_t + U_1 \sqrt{D} = T + \sqrt{Du_1^2},
\]

then we have \(U_1 = u_1/k_1 \)

Lemma 2.8: [7] Let \(E \) be a power \(\varepsilon' = t + u_1 \sqrt{D} = t + \sqrt{Du_1^2} > 1 \) of unit

\[
\varepsilon = t + u_1 \sqrt{D} = t + \sqrt{Du_1^2}
\]

in a quadratic field \(\mathbb{Q}(\sqrt{D}) \) and \(\sigma \neq t \) in \(\text{Gal}(\mathbb{Q}(\sqrt{D})/\mathbb{Q}) \). Let

\[
\begin{bmatrix}
E_1 & E_2 & E_3 \\
E_1' & E_2' & E_3'
\end{bmatrix}
\]

attached to the equations \(* \) by \(A_D \) and the rank of \(A_D \) by \(r_D \). Then we have a solution \(\{a,b,c\} \) of rational integers; \(a \pm b \pm c = 0 \) for \(r_D = 1 \)

\[
a/\pm U_1 = b/\pm U_1 = c/\pm U_1 = 1 \text{ for } r_D = 1
\]

with

\[
U_1 = U_{i,j} / U_1, \quad sg = j - k, \quad tg = k - j,
\]

\[
ug = i - j, (st, u) = 1, s + t + u = 0
\]

NEW PROOF

As an analogue of linear equations related to seven quadratic subfields of an octic 2-elementary abelian extension field, using a single simultaneous equation related to a unique quadratic subfield of a cyclic quartic field \(K \) with prime conductor \(\neq 5 \), we develop a new proof of non-monogeneity of the field \(K \).

Theorem 3.1: There does not exist any cyclic quartic subfield \(K \) of prime conductor \(p \) congruent to 1 modulo 4 whose ring \(\mathbb{Z}_K \) of integers has a power integral basis except for the 5th cyclotomic field

\[
k_5 = \mathbb{Q}(\exp(2\pi i/5))
\]

Proof: Consider a cyclotomic extension field \(k_5 = \mathbb{Q}(\zeta_5) \) of a prime conductor \(p \) congruent to 1 modulo 4 for a primitive \(p \)-th root of unity \(\zeta_p \). Let \(G \) be the Galois group \(\text{Gal}(k_5/Q) \) of \(k_5 \) over \(Q \) generated by an embedding \(\sigma : \zeta_p \mapsto \zeta_p^r \) with a primitive root \(r \) modulo \(p \). Let \(H_F \) denote the corresponding subgroup of \(G \) to a subfield \(F \) of \(k_p \). Let \(K \) and \(k \) be a cyclic quartic subfield \(\mathbb{Q}(\zeta) \) and a quadratic subfield \(\mathbb{Q}(\gamma) \) of \(k_p \) with Gauss periods

\[
\eta = \sum_{\rho \in H_k} \zeta_p^e \quad \text{of } \varphi(p)/4 \text{ terms and}
\]

\[
\gamma = \sum_{\rho \in H_k} \zeta_p^f \quad \text{of } \varphi(p)/2 \text{ terms, respectively. Here } H_k = \langle \sigma^f \rangle \text{ and } H_k = \langle \sigma^f \rangle \text{ are Galois subgroups corresponding to the subfields } K \text{ and } k \text{ respectively and } \varphi(.) \text{ denotes the Euler function.}
\]

Now for an abelian number field tower \(\mathbb{Q} \subset L \subset \mathbb{Q} \) with the Galois group \(G = (L/Q), \sigma \) and \(\sigma_{L/Q} \) denote the field different

\[
\{ \beta = \beta; \forall \beta \in Z_p, \forall \rho \in G(L/Q) \}
\]

of \(F \) and the relative field different

\[
\{ \gamma = \gamma; \forall \gamma \in Z_p, \forall \rho \in G(L/F) \}
\]

of \(L/F \), respectively. Then the field discriminant \(d_F \) and the relative field discriminant \(d_{L/F} \) are defined by \(N_L(d_F) \) and \(N_{L/F}(d_{L/F}) \), respectively, where for an ideal \(I \) of \(L \), \(N_{L/F}(I) \) means the ideal norm of \(I \) with respect to \(L/F \). Here we denote \(N_{L/0}(I) \) by \(N_L(I) \) for an ideal \(I \) in \(L \). Also the different \(\delta_{L/0}(\zeta_p) \) of an element \(\zeta_p \in Z_p \) is given by

\[
\delta_{L/0}(\zeta_p) = (\zeta_p - \zeta_p^e)(\zeta_p - \zeta_p^f) \cdots \cdots (\zeta_p - \zeta_p^{e+f+\cdots})
\]
and the different $d_k(ξ)$ of an element $ξ ∈ Z_k$ in the quartic subfield K is given by

$$d_k(ξ) = (ξ - ξ') (ξ - ξ') (ξ - ξ') (ξ - ξ')$$ \hspace{1cm} (3.1)

Assume that Z_k has a power integral basis generated by an integer $ξ ∈ Z_k$, namely $Ind_K(ξ) = 1$, here the group index $(Z_r : ζξ)$ of a sub module $Z[ξ]$ of Z_r for $ξ ∈ Z_r$ coincides with the index $Ind_K(ξ)$ of an integer $ξ$. Taking the norm of both sides of (3.1)

$$N(ξ) = ξ' ξ' ξ' ξ'$$

and hence we obtain,

$$d_k = N_k (d_k(ξ)) = ξ' ξ' ξ' ξ'$$

and hence obtain,

$$d_k = (-1)^α A^2 B^2 C^2$$ \hspace{1cm} (3.2)

with

$$A = (ξ - ξ')(ξ - ξ')(ξ - ξ')(ξ - ξ')$$
$$B = (ξ - ξ')(ξ - ξ')(ξ - ξ')(ξ - ξ')$$
$$C = (ξ - ξ')(ξ - ξ')(ξ - ξ')(ξ - ξ')$$

and

$$A - B - C = 0$$ \hspace{1cm} (3.3)

Now for the abelian extension field tower $Q ⊂ k ⊂ K$, applying lemma 2.2, we obtain

$$d_{k} ≅ d_{k/k}$$ \hspace{1cm} (3.5)

Let X_H denote the character group corresponding to a subgroup H of $G(kp/Q)$ and hence

$$X_{G(kp/Q)} = <χ>, \hspace{0.5cm} X_{G(kp/Q)} = <δ>$$

for $δ = χ^{p(p)}/4$ and $X_{G(kp/Q)} = <λ>$ for $λ = χ^{p(p)}/2$ hold, where $χ$ denotes a primitive character of order p. By virtue of Hasse’s conductor-discriminant formula [12], the field discriminants are

$$d_k = \prod_{\rho \in F} p^ρ$$ and $d_k = \prod_{\rho \in F} p^ρ$

Here, $f_ρ$ denotes the conductor of a character $ρ ∈ X_{G(kp/Q)}$. So from (3.6), we have $p^ρ ≡ p^ρ d_{k/k}$ and hence $√p ≡ d_{k/k}$

Now for the Gauss period

$$η = η_p + η_p + η_p + η_p$$

$Z_k = Z[1, η, η', η'']$. Then for any $ξ ∈ Z_k$, we have $ξ = a_0 + a_1 η + a_2 η' + a_3 η''$ with $a_i ∈ Z(0 ≤ j ≤ 3)$. Thus

$$ξ' = a_0 + a_1 η' + a_2 η'' + a_3 η'''$$

For $(0 ≤ j ≤ 3)$ we have,

$$ξ - ξ' = a_0 (η - η') + a_1 (η' - η'') + a_2 (η'' - η''')$$

and by

$$η - η'' = (ξ_p - ξ_p) + (ξ_p - ξ_p) + (ξ_p - ξ_p)$$

it holds that $η'' - η'' = 0 (mod P)$ for each difference $η'' - η'' (0 ≤ r < s ≤ 3)$. Here P denotes a ramified prime ideal $(1 - ζ_p)$ in k_p. Since p is completely ramified in the field k_p, it holds that $p = Π(φ(p))$ and $Π(φ(p)) = P (1 ≤ j ≤ φ(p) - 1)$. Moreover there exists a prime ideal \tilde{p} in K such that $Π ⊂ Z_k = \tilde{p}$. It holds that \tilde{p}^P with $p = \tilde{p}$ and $p ≡ p'$. Then $p = Π(φ(p))$ holds in K. By (3.5) we have

$$A = (ξ - ξ')(ξ - ξ')(ξ - ξ')(ξ - ξ')$$

Next we obtain the value of C such that

$$\sqrt{p} ≡ A^2 B^2 C^2 (P)$$

Finally derive the value of B using the equation (3.2), we have

$$(Q^{p(p)})^1 = (Q^{p(p)})^2 B^2 (Q^{p(p)})^{2^2}$$
namely

\[\sqrt{p} \cong 2^{(p-1)/2} B \]

Now for the quadratic subfield \(k = \mathbb{Q}(\sqrt{p}) \) of \(k \), \(Z_k = \mathbb{Z}[1,\alpha] \) with \(\alpha = (1 + \sqrt{p})/2 \) let \(U_k \) denote the unit group \(<-1> \times <\varepsilon_0> \) of \(k \) with the normalized fundamental unit \(\varepsilon_0 > 1 \) of \(k \) where \(\varepsilon_0 = (a+b\sqrt{p})/2 \) with \(a, b \in \mathbb{Z} \) and \(0 < b < a \). Let \(\rho \) be the real conjugate \(\neq i \) with respect to \(k/\mathbb{Q} \). For a prime conductor \(p \equiv 1(\mod 4) \), it is known that \(N(\varepsilon_0) = (a^2 - b^2p)/4 = -1 \) [12]. Thus from the linear relation (3.4) of three partial differents of a number \(\xi \) there exists three units \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \in U_k \) such that

\[\varepsilon_1 \sqrt{p} + \varepsilon_2 \sqrt{p} + \varepsilon_3 \sqrt{p} = 0 \] (3.6)

Then we obtain the simultaneous equations;

\[
\begin{align*}
\varepsilon_1 + \varepsilon_2 + \xi &= 0 \\
\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 &= 0
\end{align*}
\] (3.7)

If the equations with the coefficients \(\varepsilon_1, \varepsilon_2, \varepsilon_3, \xi \) have rank 1, then \(\varepsilon_1/\varepsilon_2 = \alpha \neq 1 \) holds. However by (3.7), it follows that \(\xi = 0 \) which is impossible. Therefore the rank of the system (3.7) of linear equations is equal to 2, namely \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \neq 0 \) with \(3\xi_j \in \mathbb{Q} \). Put \(\varepsilon_j = \xi_j^2 \).

Without loss of generality, we may assume that \(i_1 \leq i_2 \leq i_3 \) and \(i_1 \neq i_2 \) or \(i_2 \neq i_3 \). Then we obtain \(\varepsilon_0^\ell \pm \varepsilon_0^i + \varepsilon_0^i = 0 \) i.e. \(1 \pm \varepsilon_0^i \pm \varepsilon_0^i = 0 \). Put \(j_1 = i_1, j_2 = i_2, j_3 = i_3 \), thus \(j_1 > 0 \) or \(j_2 > 0 \) holds. Hence with \(0 \leq i_1 \leq i_2 \), it holds that \(1 \pm \varepsilon_0^i \pm \varepsilon_0^i = 0 \). Put \(i_1 = \ell \) and \(i_2 = m \) with \(\ell < m \). Then the above equation is equivalent to

\[1 + \varepsilon_0^\ell - \varepsilon_0^m = 0 \] (3.8)

From (3.8), we have \(1 + \varepsilon_0^\ell = \varepsilon_0^m \). Put

\[\varepsilon_j = \varepsilon_0^j = (t_j + u_j \sqrt{p})/2 \]

Thus

\[1 + (t_1 + u_1 \sqrt{p})/2 = (2 + t_1 + u_1 \sqrt{p})/2 = (t_m + u_m \sqrt{p})/2 \]

Comparing the coefficient of \(\sqrt{p} \), we obtain \(u_1 = u_m \). Since \(\ell < m \), we have \(1 < \ell + 1 < m \), so that \(\varepsilon_{i+1} \leq \varepsilon_m \) holds. This provides

\[(t_{i+1} + u_{i+1} \sqrt{p})/2 \leq (t_m + u_m \sqrt{p})/2 \]

Then it holds that \(u_{i+1} \leq u_m \).

On the other hand, it follows that

\[(t_{i+1} + u_{i+1} \sqrt{p})/2 = \varepsilon_{i+1} = \varepsilon_0 \]

Thus we obtain

\[u_{i+1} = \varepsilon_0 = (t + u_1 \sqrt{p})/2 \]

Hence \(u_{i+1} \leq u_m = u_j \) holds, which lead to the inequality \(u_{i+1} \leq u_j \). However by [4],

\[N_j(\varepsilon_j) = (a^2 - b^2p)/4 = -1 \]

Then it holds that \(a > 2 \) if \(p \neq 5 \), Then we obtain

\[u_i = u_j < b / 2 + u_j \leq (t + u_j \sqrt{p})/2 = u_{i+1} \leq u_m = u_j \]

which deduces a contradiction because of \(p \neq 5 \).

Remark 3.1: In the case of 5th cyclotomic field \(k_5 \), the fundamental unit \(\varepsilon_0 \) of \(k \) is equal to \((1 + \sqrt{5})/2 \). Then there exists a solution of (3.8) for \(\varepsilon_j = (6 + 2\sqrt{5})/4 \), namely,

\[1 + \varepsilon_0 - \varepsilon_0^j = 1 + (1 + \sqrt{5}/2 - (3 + \sqrt{5})/2 = 0 \]

In fact, \(Z_k \) has a power integral basis \(\mathbb{Z}[\xi, \zeta, \xi \zeta, \xi \zeta^2] \). Finally concerning the problem 6 in [13], we propose the next two related to Theorem 3.1.

Problem 3.1: Determine the monogeneity of an abelian but non-cyclic octic extension field \(L \) including a cyclic quartic subfield with \([L:Q] = 8 \).

REFERENCES