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Abstract: In this paper, we study the solutions and periodicity behavior of some systems of fourth-orderrational difference equations with positive initial conditions. Some numerical examples are givento verify our theoretical results.
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INTRODUCTION


Recently, studying the qualitative behavior of difference equations and systems is a topic of a great interest. Applications of discrete dynamical systems and difference equations have appeared recently in many areas such as ecology, population dynamics, queuing  problems,  statistical  problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical  networks,  neural  networks, quanta in radiation, genetics in biology, economics, psychology, sociology, physics, engineering, economics, probability theory and resource management. Unfortunately, these are only considered as the discrete analogs of differential equations. It is a well-known fact that difference equations appeared much earlier than differential equations and were instrumental in paving the way for the development of the latter. It is only recently that difference equations have started receiving the attention they deserve. Perhaps this is largely due to the advent of computers where differential equations are solved by using their approximate difference equation formulations. The theory of discrete dynamical systems and difference equations  developed  greatly  during  the  last  twenty five years of the twentieth century. The theory of difference equations occupies a central position in applicable analysis. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. Nonlinear difference equations of order greater than one are of paramount importance in applications. It is very interesting to investigate the solutions of a system of higher-order rational difference equations and to discuss the periodicity nature of solutions.


Cinar [1] investigated the periodicity of the positive solutions of the system of rational difference equations:
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Stevic [2] studied the system of two nonlinear difference equations:
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where un, vn, wn, sn are some sequences xn or yn.


Stevic [3] studied the system of three nonlinear difference equations:
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where the parameters ai, bi, ci, i({1,2,3} are real numbers.


Bajo et al. [4] investigated the global behavior of difference equation: 
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for all values of real parameters a,b.


Kalabusic et al. [5] investigated the global dynamics of the following system of difference equations:
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Kurbanli et al. [6] studied the behavior of positive solutions of the system of rational difference equation: 
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Touafek et al. [7] studied the periodic nature and got the form of the solutions of the following systems of rational difference equations: 
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Din et al. [8] investigated the dynamics of a system of fourth-order rational difference equations:
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Recently, Touafek et al. [9] studied the periodicity nature of the following systems of rational difference equations: 
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Our aim in this paper is to investigate the solutions and periodicity nature of a system offourth-order rational difference equations:
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with the initial conditions x-3, x-2, x-1, x0
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and
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In this section we study the solutions of following system:
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with the initial conditions 
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such that
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Theorem 1: Let [image: image24.png]N



 be solution of system (2). Then for n(-3 one has 
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Proof: Results are obvious for n = 0. Suppose that results are true for n = k(1. Then for n = k+1 using system (2) one has:
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Similarly one has:
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Similarly, one can prove the other results. 


The following theorem shows periodicity nature of system (2).
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 be solution of system (2). Then for n(-3 the following results hold:

(i)
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Proof

(i)
Using system (2) one has:
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(ii) Using system (2) and (i) one has:
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Hence, the proof is completed. 

Example 1: Consider the System (2) with initial conditions  x-3  =  0.1,  x-2  =  -0.2,  x-1  =  0.3, x0 = 0.4, y-3 = -0.5, y-2 = 0.6, y-1 = 0.7, y0 = 2


Figure 1 shows periodicity nature of solutions of System  (2) with initial conditions x-3 = 0.1, x-2 = -0.2, x-1 = 0.3, x0 = 0.4, y-3 = -0.5, y-2 = 0.6, y-1 = 0.7, y0 = 2
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In this section following system is discussed:
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with the initial conditions x-3, x-2, x-1, x0, y-3, y-2, y-1, y0 are non-zero real numbers such that
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 be solution of system (3). Then for n(-3 one has
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where 
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Proof: Results are obvious for n = 0. Suppose that results are true for n = k(1. Then for n = k+1 using system (3) one has:
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Similarly one has:
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Similarly, one can prove the other results. 

Theorem 4: Let [image: image190.png]{(Xp}n=-z



 be solution of system (3). Then for n(-3 the following results hold:
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Proof

(i)
Using system (3) one has:
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(ii) Using system (3) and (i) one has:
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Example 2: Consider the System (3) with initial conditions x-3 = 1, x-2 = 2, x-1 = 3, x0 = 4, y-3 = 5, y-2 = 6, y-1 = 7, y0 = 8
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Figure  2  shows  periodicity  nature  of  solutions of  System  (3)  with  initial  conditions  x-3 = 1, x-2 = 2, x-1 = 3, x0 = 4, y-3 = 5, y-2 = 6, y-1 = 7, y0 = 8

ON THE EQUATION 
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In this section, we study the following system:
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with the initial conditions 
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 be solution of system (4). Then for n(-3 one has 
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where,  x-3  =  a,  x-2  =  b, x-1 = c, x0 = d, y-3 = e, y-2 = f, y-1 = g, y0 = h

Proof: The proof is similar to Theorem 1 and Theorem 3. Hence, it is omitted. 

Theorem 6: Let [image: image252.png]{(Xp}n=-z



 be solution of system (4). Then for n(-3 the following results hold:
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Proof: The proof is similar to Theorem 2 and Theorem 4. Hence, it is omitted. 

Example 3: Consider the System (4) with initial conditions  x-3  =  8,  x-2  =  5, x-1 = 3, x0 = 2.5, y-3 = 7, y-2 = 6, y-1 = 0.7, y0 = 3.8


Figure  3  shows  periodicity  nature  of  solutions of  System  (4)  with  initial  conditions  x-3 = 8, x-2 = 5, x-1 = 3, x0 = 2.5, y-3 = 7, y-2 = 6, y-1 = 0.7, y0 = 3.8 such that ( = ( = -1.
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In this section, we study the following system:
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with the initial conditions x-3, x-2, x-1, x0, y-3, y-2, y-1, y0 are non-zero real numbers such that
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Theorem 7: Let [image: image268.png]{(Xp}n=-z



 be solution of system (5). Then for n(-3 one has 
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where,  x-3  =  a,  x-2 = b, x-1 = c, x0 = d, y-3 = e, y-2 = f, y-1 = g, y0 = h

Theorem 8: Let [image: image295.png]{(Xp}n=-z



 be solution of system (5). Then for n(-3 the following results hold:
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Example 4: Consider the System (5) with initial conditions  x-3  =  4,  x-2  =  2,  x-1  = 6, x0 = 9, y-3 = 11, y-2 = 3, y-1 = 7.5, y0 = 0.6


Figure  4  shows  periodicity  nature  of  solutions of  System  (5)  with  initial  conditions  x-3 = 4, x-2 = 2, x-1 = 6, x0 = 9, y-3 = 11, y-2 = 3, y-1 = 7.5, y0 = 0.6

Example 5: Consider the System (5) with initial conditions  x-3  =  10.7,  x-2  =  -12,  x-1  =  19,  x0 = 5.7, y-3 = 6.8, y-2 = 7.3, y-1 = -3.5, y0 = 1.6.


Figure  5  shows  periodicity  nature  of  solutions of   System   (5)   with  initial  conditions  x-3  =  10.7, x-2 = -12,x-1 = 19,x0 = 5.7, y-3 = 6.8, y-2 = 7.3, y-1 = -3.5, y0 = 1.6.
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