Modeling and Simulation for Variable Speed Direct Drive Wind Energy Conversion System with Electrically Excited Synchronous Generator

1W.I. Mohamed, 2A.M. Ibrahim, 1M.N. Eskander and 2H.T. Dorra

1Electronics Research Institute, Dokki, Giza, Egypt
2Faculty of Engineering, Cairo University, Giza, Egypt

Abstract: Nowadays Direct drive variable speed Wind Energy Conversion System (WECS) are increasing rapidly due to the proper performance and the better reliability than the geared drives. In direct drive WECS, the generator is either Permanent Magnet Synchronous Generator (PMSG) or Electrically Excited Synchronous Generator (EESG). Both generators have advantages and disadvantages. In this paper, the comparison between PMSG and EESG for WECS shall be presented. Moreover, complete modeling and simulation for WECS based on EESG system shall be presented. The mathematical equations for each subsystem and the control strategies for each subsystem are fully described.

Key words: Control, converter, EESG, MATLAB, PMSG, simulation, variable speed

INTRODUCTION

Wind energy has undergone a revolution during the last century. A renewed interest in wind energy arose during the oil crisis in the mid 1970s. This attention has continued to grow as the demands on reducing polluting emissions have increased as well as the expected oil crisis in the future. The wind power industry has experienced an average growth rate of 27% per year between 2000 and 2011. The wind power capacity at the end of 2011 reached 238 GW by the end of 2011 as shown in Fig. 1 [1]. Direct drive synchronous generator either EESG or PMSG has the capability of direct connection (direct-drive) to wind turbines with no gearbox. This advantage is favorable with respect to lifetime and maintenance specially in high wind speeds conditions. In the recent years the use of direct drive machines with full scale power converters is increasing than before because of the numerous advantages from grid connection point of view and the fulfilling for all the international grid code requirements. In addition to that the cost of power electronics is also decreasing. Furthermore, the variable speed direct-drive machines with a full-scale power converter becoming the first choice for offshore wind farms [2]. In Polinder et al. [3] a comparisons among the different WECS in terms of energy production and the cost per kWh based on real market prices has been provided. Furthermore, In Polinder et al. [4], a comparison among the different WECS based on Doubly Fed Induction Generator (DFIG), EESG and PMSG in terms of reliability, operation and maintenance have been provided. The comparison between PMSG and EESG could be summarized as follows:

- PMSG has higher efficiency and energy yield.
- PMSG has no field losses like EESG.
- PMSG has no slip rings like EESG and accordingly PMSG is completely closed generator with higher protection degree while EESG is open generator concept with lower protection degree.
- PMSG is lighter and therefore higher power to weight ratio.
- Permanent magnet production is nearly denominated by china [5] and this is expected to continue in the future as shown in Fig. 2. On the other hand, EESG is consisting of copper bars which are available anywhere.
- Expected jump in the magnet price [5] as shown in Fig. 3 due to the sole supplier and the shortage due to gap between the supply and demand.
- EESG has no difficulties to handle in manufacturing like PMSG.
- EESG has no difficulties in maintenance on site like PMSG.
- Demagnetization of PM at high temperature is a severe problem, EESG has no demagnetization problems.

In conclusion, EESG is the better choice in regions which have climate characterized by high wind speeds

Corresponding Author: W.I. Mohamed, Electronics Research Institute, Dokki, Giza, Egypt
Fig. 1: Global installed wind power capacity, 1996 to 2011

Fig. 2: World magnet production by region from 2005 to 2020

Fig. 3: Magnet price growth
with high temperature to gather the benefits from the direct drive technology in high wind speeds and to avoid the demagnetization problem for the PMSG in high temperatures. On the other hand, PMSG is the better choice in regions which have climate characterized by high wind speeds and low temperature to gather the benefits from the direct drive technology in high wind speeds and to maximize the energy production. On contrary of DFIG and PMSG, the available literature for WECS based on EESG is very rare. Furthermore, most of published works for direct drive systems proposing the back to back voltage source converter with vector control techniques in machine side and grid side. This paper present direct drive wind energy conversion system based on EESG. The AC/DC/AC converter is comprises of uncontrolled diode rectifier followed by boost converter and IGBT inverter. The control strategies for each subsystem shall be fully described.

System modeling: The system is shown in Fig. 4 direct drive grid connected wind turbine with multi-pole field excited synchronous generator equipped with generator side diode rectifier, DC boost converter and grid side converter. The control goals could be listed as follow:

- Maximum power point extraction in the below rated wind speed.
- Power limitation through pitch control.
- Field excitation control.
- Vector controlled current regulator inverter for synchronization to grid with controlled power factor.

Wind turbine: The mechanical power output of this turbine can be written as:

\[P_m = 0.5 \rho \frac{C_p}{\pi} R^3 V_w^2 \]

(1)

where power coefficient \(C_p \) is related to tip speed ratio \(\lambda \) by a non linear relation as shown in Fig. 5 and

\[\lambda = \frac{\omega R}{V_w} \]

(2)

The aerodynamic torque is given by:

\[T_a = 0.5 \frac{\pi \rho C_p R^3 V_w^2}{\lambda} \]

(3)

\[C_T = \frac{C_p}{\lambda} \]

(4)

As shown in Fig. 5, the performance coefficient will reach its maximum value when the pitch angle is zero and then tip speed ratio resulted from this is the nominal value.

Multi-pole synchronous generator: The generator is represented in rotationally rotor reference frame (dq frame) and all the electrical quantities are seen from the stator. The equivalent circuits of the generator in (dq frame) are shown in Fig. 6 and 7. The generator equations could be written as Ion Boldea [6]:

\[V_d = R_d i_d + \frac{d}{dt} \varphi_d - \omega \varphi_q \]

(5)

\[V_q = R_q i_q + \frac{d}{dt} \varphi_q + \omega \varphi_d \]

(6)

\[V_{iu} = R_{iu} i_{iu} + \frac{d}{dt} \varphi_{iu} \]

(7)

\[V_{iu} = R_{iu} i_{iu} + \frac{d}{dt} \varphi_{iu} \]

(8)

\[V_{iu} = R_{iu} i_{iu} + \frac{d}{dt} \varphi_{iu} \]

(9)

\[V_{iu} = R_{iu} i_{iu} + \frac{d}{dt} \varphi_{iu} \]

(10)

\[\varphi_d = L_d i_d + L_{md} (i_u + i_{iu}) \]

(11)
Fig. 5: C_p as a function of pitch angle and tip speed

Fig. 6: The electrical model of the generator related to q axis

Fig. 7: The electrical model of the generator related to d axis

\[
\phi_q = L_q i_q + L_{mq} \dot{i}_q \\
\phi_{d} = L_{dq} \dot{i}_d + L_{md} (i_d + \dot{i}_d) \\
\phi_{ad} = L_{ad} \dot{i}_a + L_{md} (i_d + \dot{i}_d) \\
\phi_{kq1} = L_{kq1} i_{kq1} + L_{mkq} i_q \\
\phi_{kq2} = L_{kq2} i_{kq2} + L_{mkq} i_q
\]

(AC/DC/AC) converter modeling and control: As shown in Fig. 4, the AC/DC/AC converter is consisting of a diode rectifier, a boost DC/DC converter and a DC/AC voltage-source inverter (VSI). The boost converter comprises an inductor, an IGBT switch, a diode and the output capacitor. The boost converter shall be responsible for controlling the generator output power in the below rated speed region (maximum power tracking). VSI converts the DC power coming from the DC bus to AC with specific voltage and frequency to meet the grid requirements.

Control for maximum power tracking: Different regions for wind speed-power curve are shown in Fig. 8. The control strategy depends on each region nature.

Region 1: $[V_{cut in}... V_n]$ Maximization of extracted energy: the wind turbine should extract wind energy at the highest efficiency.

Region 2: $[V_n... V_{cut off}]$ Limitation of extracted energy: the controls aim to keep the generator output power at the nominal power P_n by pitching the blades.

In each of the following regions the reference turbine speed in rad/sec and the reference torque shall be calculated using equations 1, 2, 3, 4 and Fig. 5.

Speed control in region 1:

In Fig. 5, the condition for maximum power tracking is at the maximum point of the curve λ_{m}. At this point:

\[
\omega_{ref} = \frac{\lambda_{m} V_w}{R} = K_1 V_w
\]

where:

\[
\omega_{ref} = \frac{\lambda_{m} V_w}{R} = K_1 V_w
\]

\[
K_1 = \frac{\lambda_{m}}{R}
\]

\[
K_2 = 0.5 \pi \rho C_{p_{max}} \frac{R^2 \lambda_{m}^3}{\rho_{ref}^2}
\]

Fig. 8: Different region for wind speed (V_s) power curve

\[
\frac{\phi_q}{L_q} = \frac{\phi_{d}}{L_d} + \frac{\phi_{ad}}{L_{ad}} + \frac{\phi_{kq1}}{L_{kq1}} + \frac{\phi_{kq2}}{L_{kq2}}
\]
Different formulas have been developed for \((\lambda, C_p, \beta)\) [7, 8]. The following formula will be used:

\[
C_p = C_1 \left(C_2 \lambda - C_3 \beta - C_4 \right) e^{C_5/\lambda} + C_6 \lambda
\]

(21)

Where

\[
\frac{1}{\lambda_1} = \frac{1}{\lambda + 0.08\beta} - \frac{0.035}{\beta^2 + 1}
\]

(22)

The coefficients \(C_1\) to \(C_6\) are 0.517, 116, 0.45, 21, 0.0068, respectively.

However, by substituting the value of \(C_p (C_{p_{max}}) = 0.48\) in (1), the result will be the optimal mechanical power for each wind speed (rotor speed).

The \(C_p-\lambda\) characteristics, for different values of the pitch angle \(\beta\) are shown in Fig. 5. The maximum value of \(C_p\) is achieved for \(\beta = 0\) degree and for \(\lambda = 8.1\). This particular value of \(\lambda\) is defined as the nominal value \(\lambda_{nom}\). Referring to Fig. 4, the following equation could be deduced.

\[
P_m = P_m^r
\]

(23)

Neglecting the losses in the diode rectifier. Moreover, the measured DC power shall be tracked to the reference generator power (as described above) and the error will be the input to the DC current controller which in turn generates the gating signals for the DC chopper switch. The controller block diagram as shown in Fig. 9.

Pitch control: For region 2 in Fig. 8 no optimization for wind power is done and the power is limited to the nominal power of the generator by means of pitch regulation. The controller receives the measured output power of the generator and compares this power with nominal power of the generator to decide the region of control and which route shall be followed (If \(P_{measured} < P_{nominal}\) go to region 2 algorithm otherwise, go to region 1 algorithm.) As shown in Fig. 10. The reference rotor speed will be specified accordingly and compared to the measured rotor speed; the positive error drives the pitch mechanism to higher angles. A rate limiter, set at 10 deg/s is used.

Flux estimation and field control: The three phase stator currents, voltages and the rotor angle shall be measured and the stator currents and the stator voltages are transformed into the stationary two axes (alpha-beta) Coordinate system and then into the rotating (dq) coordinate system. From equations (7) and (8), the magnitude of flux could be estimated as follow:

\[
\varphi_d = (V_d - R_i i_d) / \omega
\]

(24)

\[
\varphi_q = (V_q - R_i i_q) / -\omega
\]

(25)
From (24) & (25), the magnitude of flux can be calculated:

\[|\phi| = \sqrt{\phi_d^2 + \phi_q^2} \] \hspace{1cm} (26)

The block diagram for the flux estimation is shown in Fig. 11.

For the synchronous machine, the magnitude of internal generated voltage induced in a stator is related to the machine flux and rotor speed [9].

\[E_A = K V I \omega \] \hspace{1cm} (28)

\[\phi = K V I \] \hspace{1cm} (29)

From equations (28) and (29), the flux reference has been adjusted according to the measured rotation speed since the flux is inversely related to the rotation speed. The estimated flux obtained from equation (26) is then tracked to the reference flux while the error is entering to PI controller resulting to the field excitation voltage. The field excitation controller block diagram is shown in Fig. 13.

Grid side converter (DC/AC) control: The control system for the vector controlled grid-connected converter consists of two control loops. The inner control loop controls the active and the reactive grid current components while the outer control loop determines the active current reference by controlling the direct voltage. The reactive current reference for a grid connected converter is defined for controlling the power factor [10, 11]. The vector control of a grid
connected converter is shown in Fig. 14. The grid currents and the grid voltages are transformed into the stationary two axis (aβ) Coordinate system and then into the rotating (dq) coordinate system. The grid voltage vector occurs in the q-direction. The coordination on d-q frame is shown in Fig. 15 where:

\[
\cos \theta = \frac{e_\beta e_q}{g}, \quad \sin \theta = -\frac{e_a e_q}{g}
\]

The direct axis current corresponds to reactive power while the quadrature axis current corresponds to active power. The reactive and active power can therefore be controlled independently since the current components are orthogonal.

DC-voltage controller (Outer control loop): Based on Fig. 14, the instantaneous apparent power flowing into the grid can be written as:
The active power is the real part of (31), thus

\[P_g = \frac{3}{2} e_{gq} \frac{i_{gq}}{gq} \]

(32)

The DC voltage link power is given by:

\[P_{dc} = V_{dc} i_{dc} = V_{dc} \frac{dV_{dc}}{dt} \]

(33)

Assuming that the converter losses can be neglected, the power balance in the DC voltage link can be written as:

\[V_{dc} \frac{dV_{dc}}{dt} = \frac{3}{2} e_{gq} \frac{i_{gq}}{gq} \]

(34)

So, a transfer function between the direct voltage and active grid current can be obtained as:

\[\frac{V_{dc}}{i_{gq}} = \frac{3}{2} e_{gq} \frac{2pCV_{dc}^*}{2pCV_{dc}^*} \]

(35)

The active power is the real part of (31), thus

\[P_e = \frac{3}{2} e_{gq} \frac{i_{gq}}{gq} \]

(32)

The DC voltage link power is given by:

\[P_{dc} = V_{dc} i_{dc} = V_{dc} \frac{dV_{dc}}{dt} \]

(33)

Assuming that the converter losses can be neglected, the power balance in the DC voltage link can be written as:

\[V_{dc} \frac{dV_{dc}}{dt} = \frac{3}{2} e_{gq} \frac{i_{gq}}{gq} \]

(34)

So, a transfer function between the direct voltage and active grid current can be obtained as:

\[\frac{V_{dc}}{i_{gq}} = \frac{3}{2} e_{gq} \frac{2pCV_{dc}^*}{2pCV_{dc}^*} \]

(35)

The transfer function is non-linear; the linear transfer function could be obtained by substituting \(V_{dc}^* \) by its reference value since the objective is to maintain a constant DC voltage. So, the transfer function can be written as:

\[\frac{V_{dc}}{i_{gq}^*} = \frac{3}{2} e_{gq} \frac{2pCV_{dc}^*}{2pCV_{dc}^*} \]

(36)

The block diagram for the outer control loop is shown in Fig. 16.

Open-loop Reactive Power Control: The reactive power exchange with the grid is controlled by the reactive current component. The simplest method to control the reactive power is via an open-loop. Taking the imaginary part of equation (31) gives the reactive reference current as:

\[i_{gd}^* = \frac{2}{3} e_{gq} \frac{Q_g^*}{V_{dc}^*} \]

(37)

The reactive current reference could set to zero for unity power factor.

Current control loop (Inner control loop): Referring to Fig. 14, the equations for the grid and inverter voltages could be written as follow:
Fig. 17: Control loops for vector controlled grid connected inverter

![Control loops diagram]

Fig. 18: Wind speed

\[u_g(t) - e_g(t) = i(t)R_s + L_s \frac{di(t)}{dt} \]

(38)

in d-q frame:

\[u_d - e_{gd} = i_{gd}R_s + L_s \frac{di_{gd}}{dt} + j\omega_L i_{gq} \]

(39)

\[u_q - e_{gq} = i_{gq}R_s + L_s \frac{di_{gq}}{dt} + j\omega_L i_{gd} \]

(40)

By substituting, \(i_m^* = i_m, \) \(i_d = i_d^* \) and \(e_{gd} = 0, \) The control block diagram is shown in Fig. 17.

SIMULATION RESULTS

MATLAB/Simulink with Simpower system blocksets-Version 2011R software package is used for system simulation to study the response of the proposed grid connected wind turbine synchronous generator system at random wind speed input. The response of different control techniques are studied to show the effect of the controllers and the proper dynamic response. All the turbine parameters, generator parameters and converter parameters are given in Appendix 1). In Fig. 18 the input wind speed has been started with 5 m/s then 10 m/s, 15m/s and 20m/s. This will clarify the response of different controllers to track the wind speed variation. Figure 19 showing the grid voltages and Fig. 20, showing the current amplitudes variation based on the wind speed variations (Fig. 21 and 22) showing the stator voltage and stator currents. The stator current amplitude variation is due to the wind speed variations. Figure 23 showing the active power and in Fig. 24, the reactive power has been tracked successfully to the reference values whatever the wind speed value. In Fig. 25, the DC link voltage has been tracked successfully to the reference value for all wind speed values. In Fig. 27, the pitch degree is nearly zero corresponding to the 5m/s wind speed because in low wind speed region the rotor speed is tracked to wind speed according to \(\text{Cp-\lambda curve} \) (maximum power tracking) while for higher wind
Fig. 19: Grid voltages

Fig. 20: Grid currents

Fig. 21: Stator voltage

Fig. 22: Stator currents

Fig. 23: Active power

Fig. 24: Reactive power
speeds the pitch angle starting to increase to regulate the power output. Figure 26, 28 and 29 showing the rotor speed behavior and consequently the field voltage and mechanical power output which are follows the rotor speed reflecting the proper operation of the field controller. Figure 30 showing the dc link current which is following the rotor speed which reflecting the proper operation of speed controller.

Appendix 1

Turbine data:
- Horizontal Axis
- Rotor Diameter = 77 m
- Hub Height = 71 m
- Rated Electrical Power = 1.65 MW at 15m/s
- Tip speed = 73 m/s
- Cut-in wind speed = 3.5 m/s
- Cut out wind speed = 25 m/s
- Swept area = 4654.20 m²
- Design Tip Speed = 6.1

Generator data
- xd (pu) = 0.807
- xq (pu) = 0.449
- X’d (pu) = 0.296
- X”d (pu) = 0.201
- x”q (pu) = 0.233
- Xbase = 0.2278 O
- Internal impedance: Rphase = 17.54 mO, Ld = 3.29 mH, Lq = 1.79 mH

Converter
- Boost converter Inductance = 0.0012 H
- Boost converter Resistance = 5e-3
- DC link capacitor = 90000e-6
- Nominal DC link voltage = 1100V
- Nominal Voltage = 690 V
- Excitation nominal voltage = 700V
- Excitation nominal current = 120A
- Inertia constant = 4.32 S
- Nominal rotor speed = 18 RPM
- Nominal power = 1.65 MW
- Number of poles = 60
The simulation results showing the proper operation of speed controller for maximum power point extraction in the below rated wind speed and the pitch controller for power limitation in higher wind speeds. Furthermore, the response of the field voltage with the rotor speed variation reflecting the proper operation of the field excitation controller. For the grid side converter, vector control technique for synchronization to grid with controlled power has been implied. The simulation results showing that the control techniques are successfully regulate the Dc voltage and the reactive power and the grid connection requirements are fully adapted in all wind speed range.

REFERENCES

5. Shaw, S. and S. Constantinides, 2012. Permanent Magnets: The Demand for Rare Earths. 8th International Rare Earths Conference November