
World Applied Sciences Journal 28 (6): 842-846, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.28.06.13810

Corrsponding Author: Nurbek Saparkhojayev Senior Lecturer at Suleyman Demirel University, Ablayhan Street No 1/1,
Kaskelen, Almaty, Kazakhstan, 040900.

842

Effective Teaching of “Parallel Computing” Course by Using Microlearning Technique

Nurbek Saparkhojayev

Senior Lecturer at Suleyman Demirel University, Ablayhan Street No 1/1,
Kaskelen, Almaty, Kazakhstan, 040900

Abstract: In current time, there are many types of problems in the High Education System. Among of these
problems, the most important one is an exceeding number of information that teachers and professors provide
students. And, after this, it takes unbelievable amount of time to read this information, understand it and
get prepared to exams. Beside these constraints, the deadline for submitting any assignment or homework
is also important. So, most students cannot finish all assigned home works or programming tasks at a time.
This paper describes a research that was done in “Parallel Computing” course by use of microlearning
approach. The research paper consists of introduction, purpose of work and conclusion. All research was done
in Suleyman Demirel University, at Faculty of Engineering and Natural Sciences.

Key words: Microlearning Parallel Computing MPI OpenMP Education

INTRODUCTION Content: Each topic is represented in A4 page, where

In learning and developing environments the
following parts called macro, meso and micro are used. Curriculum: As shown in microlessons below, topics are
The main one is macro, which contains meso parts and divided into small subtopics.
meso itself contains micro parts which present the
smallest part among of them and finally all of them Form: Mostly each parallel computing technology is
construct together any products. As an example, it is taken simpler as it can be, for example to explain OpenMP
possible to use computer science example: in order to start technology, there were used some examples from real life.
and finish a big project, this project (macro) is divided
into subprojects (meso) and after this, each subproject Process: Learning “Parallel Computing” discipline is the
contains its own modules (micro). This technology is same as learning to speak foreign language; it needs a lot
well-known as “divide and conquer” technique. From this of practice. So, for this reason, each topic contains simple
example, it is possible to notice that for learning it is easier test questions and tasks, which can be solved by
to start from small parts and then at the end construct big students in around of 2-10 minutes.
part. Microlearning is a new methodology of teaching
which becomes more popular day by day. Mediality: Microlearning in Parallel Computing is

According to the authors of these research papers prepared as electronic book in PDF format with
[1-2], there are 7 dimensions of microlearning: hyperlinks. It can be also used in cell phones because of

Time: Each topic can be taught in 5-7 minutes maximum.
If topic is complex, then it should be divided into small Learning type: In the class there is a projector used for
parts. For example, MPI topic is separated into 4 small the “Parallel Computing” discipline, on which lecturer
parts, represented in 4 microlessons below. shows A4-formatted pages and then after explanation of

topic description, simple test or simple tasks are given.

PDF format.

World Appl. Sci. J., 28 (6): 842-846, 2013

843

each material, there are tests for students and simple tasks Latency occurs when..
to do. It is used to make sure that students have
understood all the materials correctly and appropriate. A lot of processors want to send at the same time;

To pass through all subjects it will be better to use System is full;
literature in microlearning style which provides System is empty;
understanding of “Parallel Computing” terminology in Starvation occurred;
basic way by dividing information into small micro parts
which have a log of graphics and pictures and not too Overhead is a type of work which is
many words for explanation. These examples show that in
learning it is important to begin from small parts to Useful;
construct big parts. Non-useful;

Microlearning in Parallel Computing: In this section, Not efficient;
the demonstration of 4 microlessons is discussed.

Lesson 1: The System performance degradation factors.
Differences in their definitions

Consists of 4 factors: starvation, latency, overhead Using technique
and waiting for contention. Also known as SLOW;
Starvation occurs when there is no work to do for Differences in their Definitions: Parallel programming
processor; with directives (OpenMP) offers many advantages
Latency is measure of the time delay experienced by over programming with the message passing paradigm
a system. Occurs when a lot of processors want to (MPI):
send and receive at the same time;
Overhead is non-useful work to manage the parallel Simple to program, with incremental path to full
resources and concurrent abstract tasks. parallelization;
Waiting on contention is about network-based time Shared memory model, no need for explicit data
delay; distribution;

All of them make our system to perform inadequately cache coherence; and
and at the end, instead of speedup, the execution time is Portability via standardization activities [4].
much bigger than in Sequential Computing.

Test for 1 Lesson: To create process, the space must be allocated;st

What is SLOW? for them;

Starvation Latency Overhead Waiting on Contention; Each thread will share a space with others;
Super Level operating windows;
Serial Leveled optimistic Work; Using Technique: For processes, in “Parallel Computing”,
Small low operating work; MPI approach is used;

For threads, you may use pthreads or OpenMP
What is the reason for starvation to occur? approaches;

Too many work; your machine for the correct and appropriate use when
Not correctly assignment of work; you do parallelization of your code by using processes;
System does not want to calculate;
Just for fun; For threads, there are no such requirements;

Good for system;

Lesson 2: Processes vs. Threads

Scalability achieved by taking advantage of hardware

Process can create threads, not vice versa;

To create threads, there is no need to allocate space

You should have at least few processors or cores in

World Appl. Sci. J., 28 (6): 842-846, 2013

844

Execution times of programs with processes are less MPI_init() must be called before any other MPI functions
when you have enough system resources and big can be called and it should be called only once.
problems, whereas in problems with small dataset, the use int MPI_Finalize() function is needed for terminating
of threads is more convenient; MPI execution environment. All MPI processes must call

Task for 2 Lesson: After students know the basic two functions of MPI,nd

Which one is true regarding the creation of processes? possible ways; however, for the save of time, usually this

When process is created, there should be space For compiling any program, this command is used:
allocated for this process;
No need to allocate, it will share with others; mpicc -o your_executable mpicode.c
Process doesn’t need any memory space;
All answers are correct; After compilation, the user need to run and for

OpenMP Approach is used for:

Process creation and manipulation;
Threads creation and manipulation; In this specific example, command runs two copies
For both; of /a.out where the system specifies number of processes
None of the answers is correct; to be 2.

Lesson 3- MPI: How to use this approach Mpi Communicators andInter-process Communication:
Communicator is an internal object, which is used in MPI.

Basic calls MPI Programs are made up of communicating processes
MPI communicators and inter-process communication and each process has its own address space containing
Collective calls its own attributes such as rank, size (and argc, argv, etc.).

To start with the explanation of MPI, we need to give communicator is MPI_COMM_WORLD and here is how
a brief info about MPI. The idea of using MPI came up in it is called within any program:
1990’s, when a community representing both vendors and int MPI_Comm_size (MPI_Comm comm, int *size)
users decided to create a standard interface to message and all processes are its members and it has a size
passing calls in the context of distributed memory parallel (the number of processes). Each process has a rank
computers. And after some time, MPI-1 was introduced. within it. You can think of it as an ordered list of
And this was just API, not programming language. processes.
Moreover, it had just two bindings: for C and Fortran For defining the rank of any process in a
programming languages. And, nowadays with a high communicator, the following function is applied:
influence and use of high-performance computing in int MPI_Comm_rank (MPI_Comm comm, int *rank),
every aspect and field of industry, there are new versions which returns the rank of the calling process in the group
of MPI are presented. underlying the comm.

Basic calls: Every MPI program must contain the 2 main MPI functions.
preprocessor directive.

#include “mpi.h”. This mpi.h header file contains the MPI_Recv – receives a message from a process;
definitions and declarations necessary for compiling any
MPI program and mpi.h is usually found in the “include” A basic communication mechanism of MPI between
directory of most MPI installations. a pair of processes in which one process is sending

int MPI_Init(int *argc, char ***argv) function is data and the other process receiving the data is called
necessary for initializing the MPI execution environment. “point to point communication”.

this routine before exiting.

they need to know how compile a program. There are 2

easiest way is used.

running any program this command is used:

mpiexec -n 2./a.out’

MPI provides functions to interact with it. Default

Message passing in MPI program is carried out by

MPI_Send – sends message to a designated process;

World Appl. Sci. J., 28 (6): 842-846, 2013

845

Collective Calls: A communication pattern that Lesson 4: Threads: POSIX threads(pthreads) vs. OpenMP
encompasses all processes within a communicator is
known as collective communication. There are few of
them, the most frequently used are:

Synchronization: Barrier;
Communication: a. Broadcast; b. Gather & Scatter;
c. AllGather;
Reduction: a. Reduce; b. AllReduce;

Barrier- creates barrier synchronization in a
communicator group comm.

MPI_Bcast() - A collective communication call where
a single process sends the same data contained in the
message to every process in the communicator.

MPI_Scatter() - splits the data referenced by the
sendbuf on the process with rank root into p segments
each of which consists of send_count elements of type
send_type.

MPI_Gather() - collects the data referenced by
sendbuf from each process in the communicator comm
and stores the data in process rank order on the process
with rank root in the location referenced by recvbuf.

 MPI_Allgather() - gathers the content from the send
buffer (sendbuf) on each process.

MPI_Reduce() - A collective communication call
where all the processes in a communicator contribute data
that is combined using binary operations (MPI_Op) such
as addition, max, min, logical and, etc.

MPI_Allreduce is used exactly like MPI_Reduce,
except that the result of the reduction is returned on all
processes, as a result there is no root parameter. For more
information, please see the following reference [3].

Test for 3 Lesson:rd

What are the functions for initializing and finalizing
MPI environment?.

MPI_Init() & MPI_Finalize();
MPI_Start() & MPI_End();
Start() & End();
MPI_Open() & MPI_Close();

What are the functions for message-passing in MPI?.

MPI_Send() - MPI_Receive();
Send-Receive;
Mail-Get;
MPI_Deliver – MPI_ Return;

threads.
The idea of using threads is trivial: developers try to

achieve parallelism with insufficient resources, which
means you use multi-thread programming to achieve high
throughput, however you have just one shared memory
for all threads. There are many types of them, like Java
threads and others, however, in this paper, pthreads and
OpenMP are discussed.

Pthreads: As it was already mentioned, threads are
well-known as lightweight processes. They work very
similar to processes, except the fact that they have shared
resources. The header file #include <pthread.h> should be
included in the code; however, comparing to MPI, there
is no need to install package and prepare everything
before running a program. Pthreads does not need any
package to be installed in machine.

Pthread_create() -Creates a new thread within a
process;

Pthread_exit() - Terminates the calling thread and
makes the value_ptr available to any successful join with
the terminating thread.

With a knowledge of these two commands, any
developer who has some programming skills can start
working on Pthreads. However, other commands need
more details and because of this fact, are not covered.

OpenMP: What needs to be covered in this topic, are
followings:

OpenMP [5] is designed to support portable
implementation of parallel programs for shared memory
multiprocessor architectures. OpenMP is an API
(Application Programming Interface), it is not a
programming language. It consists of a set of compiler
directives that help the application developer to parallelize
their workload. OpenMP is composed of the following
main components:

Directives;
Runtime library routines;
Environment variables;

Runtime libraries can be accessed by including omp.h
in applications that use OpenMP.

Omp_get_num_threads() - returns the total number of
threads currently in the group executing the parallel block
from where it is called.

World Appl. Sci. J., 28 (6): 842-846, 2013

846

Omp_get_thread_num() - for the master thread, this CONCLUSION
function returns zero. For the child nodes the call
returns an integer between 1and omp_get_num_ Microlearning gives a great opportunity for
threads()-1inclusive. OpenMP provides four main humanbeing in order to be more educated. At the current
environment variables for controlling execution of parallel time, everyone unconsciously uses the microlearning
codes: approach while reading tutorials, forums, wiki, blogs and

OMP_NUM_THREADS–controls the parallelism of teaching students in our university by using
the OpenMP application; microlearning method and we have good feedback from
OMP_DYNAMIC–enables dynamic adjustment of them. There was another research done in [6], where
number of threads for execution of parallel regions; authors showed that by the using microlearning
OMP_SCHEDULE–controls the load distribution in approach, it is possible to teach “Computer Networks”
loops such as do, for; course for students. It is an interesting fact, but now
OMP_NESTED–Enables nested parallelism in students provide more interest for course discussed
OpenMP applications; above and students started learning more materials

comparing to previous years. This paper shows how to
Task for 4 Lesson: apply microlearning principles in teaching “Parallelth

Which one of the followings is not main component
of OpenMP?. REFERENCES

Directives; 1. Hug, Theo, Lindner, Martin; Bruck and A. Peter, 2006.
Runtime library routines; Microlearning: Emerging Concepts, Practices and
Environment variables; Technologies after e-Learning. Proceedings of
Compilers; Microlearning 2005. Innsbruck: Innsbruck University.

2. Micro Learning and Narration, Theo Hug, Innsbruck,
Which one of the followings is not main environment Paper presented at the fourth Media in Transition

variable of OpenMP?. conference, May 6-8, 2005, MIT, Cambridge (MA),

OMP_NUM_THREADS; 3. MPI Standard official web-site for developers:
OMP_DYNAMIC; http://www.mpi-forum.org/.
OMP_SCHEDULE; 4. Jin H., M. Frumkin and J. Yan, 1999. “The OpenMP
OMP_NESTED; Implementation of NAS Parallel Benchmarks and Its
OMP_STATIC; Performance”, NAS Technical Report NAS-99-011.

other resources. This approach was started to be used for

Computing” course.

USA.

5. OpenMP Fortran Application Program Interface,
http://www.openmp.org/.

6. Zhamanov, A. and M. Zhamapor, 2013. “Computer
Networks teaching by microlearning principles”, in
Journal of Physics: Conference Series, 423: 012028.

