Does Credit Really Matter to Food Security for the Fishermen? A Case of Community Based Fishery Mangement Project in Bangladesh

Kazi Tanvir Mahmud, Jahangir Alam, Ferdous Alam and G.M. Shamsul Kabir

1Senior Research Fellow, Research and Evaluation Division, BRAC, Dhaka, Bangladesh
2Department of Agribusiness and Marketing, Bangladesh Agricultural University, Mymensingh, Bangladesh
3Department of Economics, American international University- Bangladesh, Faculty of Arts and Social Sciences, Dhaka, Bangladesh
4Department of Fisheries, Dhaka, Bangladesh

Abstract: The Community Based Fishery Management (CBFM) project provided credit support to the fishermen to improve their living standard in terms of food security. Primary data were collected from the 213 households involved in fishery activities applying simple random sampling technique. This study shows that fishery credit did not have any significant influence on their household income and food security.

Key words: Credit • Fishery • Food Security • Bangladesh

INTRODUCTION

Fishery sector is one of the potential sub-sectors of the economy of Bangladesh. The contribution of fishery sub-sector to the GDP was estimated at 4.43 percent [1]. Fishery sector plays an important role in employment generation, nutrition and foreign exchange earnings for Bangladesh [2]. About two million people are employed in fishing and other related activities [3]. Realizing the potentials of the fishery sector, the Government of Bangladesh (GoB) has provided special attention to the development of this sector. Nevertheless, the socioeconomic plight of the fishing community is quite unsatisfactory. Researchers [4] conducted a study on the borrowers of Bangladesh who took loan for fishery activities and they found that the fishermen had inadequate income, lack of purchasing power to buy food, low level of education, low level of investment ability and lack of skills in pursuing income-generating activities (IGAs). In the context of rural Bangladesh, poor people have very limited access to formal financial institute due to collateral requirement [4-6]. Due to lack of financial support they often fail to start IGAs even though having adequate skills and potentials. Such a scenario can never be expected for any developing country. Institutional credit support may assist the fishermen in increasing their investment capacity and will also provide a unique opportunity to uplift their living-standard by increasing their fishery production, income and consumption. The national fishery policy of Bangladesh focuses on improving the overall living-standard of the fishermen through increasing fisheries production, generating employment opportunity, fulfilling the protein demand of the citizens, maintaining ecological balance and encouraging co-management system [3]. Being consistent with the national policy, Community Based Fishery Management (CBFM) project took the effort to provide credit and training facilities to the poor fishermen of Sylhet and Moulivi-Bazaar district in order to improve their living-standard in terms of food security and household income. One of the major goals of the project was to fulfill basic needs of the poor fishermen through intervention of project activities. The reason behind of this intervention was that it was observed that the fishermen had severely suffered from lack of food security, mal-nutrition and adequate income and assets. Lack of employment opportunities, illiteracy, natural disaster and single crop based production throughout the year might be considered as the major causes of food insecurity among the fishing community. Researchers [7]
identified that high rate of unemployment, lack of alternative income generating activities, lack of communication system, mono-crop cultivation were the major causes of perpetual food insecurity among the people living in the haor areas. In fact, huge amount of money was spent as credit facilities through CBFM project in order to uplift the living-standard of the project beneficiaries. It is therefore, important to be ensured that this credit support must reach to the poor and genuine fishermen and the project would bring positive changes in their household income and food security status. Improving living-standard (in terms of income and food security) of the fishermen was the prime goal of the project. It is expected that due to credit intervention fishermen would be able to improve their living-standard in terms of income and food security. In fact, many households (those who were involved in fishery activities) could not come out from the poverty after joining the CBFM project. Given this backdrop, the research questions of this study are as follows:

- Does the credit support really matter to make the fishermen food secured?
- What are key determinants of food security for the poor fishermen?
- Do the fishermen utilize the credit efficiently on IGAs for being food secured?

Link Between Fishery Credit and Food Security:

Fishermen are poor in Bangladesh having lower level of income and consumption. Due to their low level of income they fail to start IGAs. They also face problem investing on their existing IGAs properly and thus obtain low production, income and consumption. Therefore, it is important to increase their access to the financial resources. Fishermen can borrow from the non-institutional source like money-lender at a higher rate of interest under unfavorable terms and conditions. Alternatively, they may borrow from formal institution like Department of Fisheries (DoF) which provides credit facilities along with other supports (such as training, inputs, technology etc.) for pursuing fishery activities. Thus, it is expected that the fishermen under this study would not take loans from the non-institutional sources and the amount of loan they received would utilize on assigned purposes. The amount of loan received by the fishermen would assist them to operate appropriate IGAs and also increase their investment, negotiation and risk-bearing ability. Through operating IGAs properly with the support of credit, fishermen would be able to increase their household income resulting more consumption of food and non-food items. However, households’ food security does not merely depend on the credit support but also influences by the other factors, such as: (i) infrastructural facilities in the rural areas, (ii) educational background of the fishermen, (iii) labor availability, (iv) fishery policy of the GoB, (v) number of fishery technology transferred to the fishermen. These socioeconomic factors should be analyzed critically in order to ensure food security for the poor fishermen (Figure 1).

Fig. 1: Improvement of Food Security Status of the Fishermen through Fishery Credit Program

Source: Adopted and modified from [2, 4, 5]
Table 1: Mean values of household assets, project and control areas

<table>
<thead>
<tr>
<th>Index</th>
<th>CBFM project</th>
<th>Non-CBFM</th>
<th>CBFM-Non-CBFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Score</td>
<td>Standard Deviation</td>
<td>Mean Score</td>
</tr>
<tr>
<td>Social capital</td>
<td>4.024</td>
<td>2.046</td>
<td>2.796</td>
</tr>
<tr>
<td>Physical capital</td>
<td>5.788</td>
<td>6.403</td>
<td>5.269</td>
</tr>
<tr>
<td>Human capital</td>
<td>2.421</td>
<td>3.281</td>
<td>2.153</td>
</tr>
<tr>
<td>Financial capital</td>
<td>6.038</td>
<td>5.648</td>
<td>3.829</td>
</tr>
<tr>
<td>Natural capital</td>
<td>2.595</td>
<td>2.589</td>
<td>1.768</td>
</tr>
</tbody>
</table>

Source: Islam et al., 2011

Poverty and Food Consumption Scenario of Bangladesh:

In Bangladesh, about 31.5 percent of the total population is in poverty and the incidence of poverty is higher in the rural areas [8]. Poverty rate was estimated at 35.2 and 21.3 percent in the rural and urban areas respectively [8]. The per capita GDP is low for Bangladeshi citizen. Per capita GDP was estimated about 772 USD in 2012 [8]. The primary task of the GoB is to alleviate poverty. One of the major objectives of the Millennium Development Goals (MDGs) is to eradicate extreme poverty. Being consistent with the MDGs, government had set few major strategies in the Poverty Reduction Strategy Paper (PRSP) to fight against poverty which were: (i) to enhance pro-poor growth, (ii) to encourage women empowerment (iii) to invest in human development and (iv) to ensure social security. Nevertheless, poverty still persists in Bangladesh. Due to poverty poor people have to lead a low quality of life, most of them cannot even fulfill their basic need like food. Agricultural production (such as crop, fishery and livestock) is low in Bangladesh. There are several reasons behind the low production such as: (i) small land holdings, (ii) lack of modern technology, (iii) inadequate capital, (iv) lack of skills to pursue agricultural production activities, (v) high input costs, (vi) lack of improved breeds and (vi) lack of rural infrastructural facilities. In Bangladesh, rice is dominant among the crops in terms of area and production. The per acre yields of Aus, Aman and Boro rice were 771 kg, 917 kg and 1579 kg, respectively in 2011 [9]. In Bangladesh, the food grains availability largely depends on the import and food aid [10]. For example, in 2010/11, the total food grain (rice and wheat) import and food aid for Bangladesh were estimated at about 5150 thousand metric tons and 162.7 thousand metric tons respectively [8]. Due to low per capita income, the per capita consumption of food among the Bangladeshi nationals was also low. For example, as per the latest Household Income and Expenditure Survey (HIES) 2010, the per capita per day intake of major food items such as rice, wheat, beef, mutton, chicken/duck and fish were estimated at about 416 grams, 26 grams, 7 grams, 0.6 grams, 11 grams and 49 grams respectively in 2010 [11].

Case Study: Community Based Fishery Management (CBFM) Project:

Department of Fisheries (DoF) and WorldFish Center jointly launched the CBFM project in 2001. The prime objective of the project was to encourage community based fisheries management system among the fishermen. The CBFM project provided technological and financial supports to improve the living standard of the fishermen in terms of income, production and food consumption. The CBFM project targeted the genuine fishermen of 22 districts of Bangladesh covering 47 upa-zillas (lowest administrative unit). The major responsibilities of the project were: (i) to disseminate fishery technology, (ii) to provide credit and training facilities and (iii) to conduct fishery related research. CBFM project established effective partnership among other development organizations. The project had four partners, which were: (i) Department of Fisheries (DOF); (ii) WorldFish Center; (iii) Department for International Development (DFID) and (iv) Local NGOs. The project had closed all its activities in 2007. As per exit plan, the project activities would be carried out till 2015 by DoF and partner NGOs. The targeted beneficiaries of the project were about 27,000 fishermen [12]. A huge amount of credit was also provided to the project beneficiaries in order to accelerate IGAs in the project areas. Researchers [13] assessed the impact of CBFM project and found that the financial and social capital had increased among the CBFM project areas as compared to non-CBFM areas. But, the authors did not find any significant impact on physical, human and natural capital. Impacts of CBFM project was presented in the Table 1.

Literature Review:

Fishermen those who took loan from the CBFM project used the loan for buying food and bearing medical treatment and fishery related costs [13]. They found that the financial capital (credit) did not have significant impact on the household income of the project participants because of utilizing credit for the non-productive activities such as consumption, treatment and festivals. Researchers [14] conducted study on the fishermen of Yemen. They found that credit assisted them
in investing on boats, engines and nets. They also stated that access to credit was problematic for the small-scale fishery community of Yemen. The Mymensingh Aquaculture Extension Project in Bangladesh provided credit facility to the fishermen through its partner NGOs in order to increase fishery production and employment opportunities [15]. According to author, due to credit intervention of the project fishery production was increased. According to Researchers [16] unavailability of credit was the major problem in Bangladesh for the fishermen for pond fish culture entrepreneurship. They mentioned that fishermen were obligated to provide their land or resources as mortgage for getting loan from commercial bank, on the other hand, NGOs provided loan mainly to the landless, marginal and small fishermen. They indicated that fishermen had to take loans from money lenders at a very high interest rate. Researchers [4] found that fishery credit could not create any significant impact on the household expenditure of the borrowers of Agricultural Diversification and Intensification Project (ADIP) in Bangladesh. The author found that small loan size was one of the major causes of failure. Isaacs [17] mentioned that credit facility for the poor fishermen was very few or non-existent in South Africa. According to author, lack of collateral was the main problem for securing loans. Houses were commonly offered as security which had increased the risk exposure of the poor fishermen. The author indicated that the lack of credit facility was one of the major obstacles for the transformation of fishery sector in South Africa. The authors also stated that poor seed traders had the tendency to have the higher amount of credit as compared to the less poor traders.

Conceptual Framework:

Assuming that household utility function:

\[U = f (F_a, F_n, D_a, H) \]

(1)

where,

\[U = \text{Utility gained from food consumption} \]
\[F_a = \text{Food items produced by the household} \]
\[F_n = \text{Food items purchased from the market by household} \]
\[D_a = \text{Demographic characteristics} \]
\[H = \text{Total time spending on IGAs by hired and family labor} \]

The farm household acts as both producer and consumer [21]. It is assumed that the household to maximizes its utility from the consumption of the goods subject to farm production and income, such as,

\[C (Q_i, Y) = 0 \]

(2)

It is also assumed that household produces and consumes few portion of the production. Thus the household surplus is \((Q_i - E_i) = S \), where, \(Q \) is total farm production and \(E \) is the portion of farm production consumed by household. Household needs to purchase market good for consumption at market price. Household uses his family members but does not need to pay for family labor and the household also hires labor for farm activities. It is also assumed that beside farm revenue household receives revenue from non-farm activities denoted by \(R \). Therefore, household total revenue function is:

\[TR = P_i (Q_i - E_i) + wL + R \]

(3)
Assume that, household has cost functions:

$$TC = wL + B_c + F_m P_m + L_c$$ \hspace{1cm} (4)

Thus, Profit: $Pi (Q_i - E_i) + wL_i + R - (wL_i, Bc + F_m P_m + L_c) = 0$

$$C^* = C^* \{Qi (Pr, w, Cr, L_i, T); Pi, Pm, w, Bc, Lc, R\}$$

where,

- $P_i =$ Price of the production of the farmer
- $P_m =$ Price of the good purchased from the market
- $w =$ Wage rate
- $L_i =$ Family labor used for production activities
- $L_n =$ Hired labor used for production activities
- $B_c =$ Cost of borrowing
- $L_c =$ Cost of using land

Profit or surplus earning of the household,

$$Y^* = Y^* (Q_i, Pi, Pm, w, Bc, Lc, R)$$

We also assume that household uses labor, agricultural land, credit, technology as inputs for household agricultural production. Thus household input function is:

$$I = I(Pr, w, Cr, L_i, T)$$

where,

- $I =$ Demand for input;
- $w =$ Wage rate,
- $T =$ Available technology
- $Pr =$ Average price of inputs used for producing Si
- $L_a =$ area of agricultural land
- $Cr =$ Cost of using technology

$$I^* = I^*(Pr, w, Cr, L_i, T)$$

Household farm production will depend on the household input demands. Thus,

$$Q_i = Q(I)$$

$$Q^* = Q^*(Pr, w, Cr, L_i, T)$$

From equation (5), we can write: $Y^* = Y^*(Q_i, Pi, Pm, w, Bc, Lc, R)$$

$$Y^* = Y^* \{(Pr, w, Cr, La,T); Pi, Pm, w, Bc, Lc, R\}$$

Consumption demand can be solved in terms of income; quantities produced, amount of credit, household demographic characteristics and time spending on IGAs.

Methodology: Primary data were collected from the beneficiaries of the NGOs selected by the CBFM project. The lists of the households were collected from the local offices of CBFM project of Sylhet and Moulivibazaar districts. In selecting sample, the criteria which were used as follows:

- Households engaged in fisheries activities,
- Households which were the permanent resident of the village,
- Households having less than 100 decimals of land,
- Households which joined the program first time in 2008,
- Households which received at least one fishery training after joining in the CBFM project,
- Households which utilized the credit at least thirty six months for fishery activities after joining the credit program and,
- Households which monthly income was less than 100USD in 2011.

The samples were selected by using Simple Random Sampling (SRS) technique. A total of 213 households were selected from the 328 households. Survey was conducted during January 2012 to February 2012. The main components captured in the questionnaire were: demographic profile, economic activities, household assets, training activities and opinion about the fishery training program.

Several estimation techniques are potentials for analyzing the problem at hand. For example, (i) Ordinary Least Square (OLS), (ii) Weighted Least Square (WLS), (iii) Two Stage Least Square (TSLS) and (iv) Weighted Two Stage Least Square (WTSLS) are often used in order to measure the impact of project interventions on the household living-standard [2, 4, 5]. Researchers [22] used OLS to assess the impact of lending on borrowers income and assets. It is important to take note that OLS technique cannot be appropriate to use if the heteroscedasticity problem arises [2, 4, 5]. Heteroscedasticity problem can be solved by two ways, such as: (i) Heteroscedasticity-consistent estimation method (White’s method) and (ii)
WLS method [23]. Impact of microcredit on the borrowers’ income and expenditure was measured in Bangladesh using WLS [4, 5]. Researchers [24] found that microcredit program had a positive impact on the African borrowers in terms of income and assets. The authors used both OLS and TSLS techniques in order to assess the impact of the microcredit program on the borrowers. TSLS and WTSLS consider the endogenous variable in estimating simultaneous equations [2, 5].

The researchers also assessed the opinions of the beneficiaries about the activities of the development projects. Researchers [6] used logit model to assess the opinion of the borrowers about their economic well-being under the Agricultural Diversification and Intensification Project (ADIP). Zaman [25] used logit model to assess whether the female borrowers of BRAC were empowered or not. Logit model was used in this study to find out the probability level that the household would be food secured due to the influence of particular explanatory variable. In this study, the dependent variable “food security” status has two categories. Households capable of taking three meals per day was coded as “one” otherwise coded as ‘zero’. The model can be specified as:

\[
\ln \left[\frac{P_i}{1-P_i} \right] = \beta_0 + \beta_1 \text{Crd} + \beta_2 \text{Inv} + \beta_3 \text{Inc} + \beta_4 \text{Ncr} + \beta_5 \text{Equ} + \beta_6 \text{Lan} + \beta_7 \text{Haz} + \beta_8 \text{Nil} + \mu
\]

where,
- \(\text{Crd} \) = Mean annual loan received during January 2009 to December 2011 (Taka)
- \(\text{Inv} \) = Mean annual investment on fishery production during January 2009 to December 2011 (Taka)
- \(\text{Inc} \) = Mean of annual income of the household during January 2009 to December 2011 (Taka)
- \(\text{Ncr} \) = Number of credit received by household after joining the program
- \(\text{Equ} \) = Number of fishery equipments used by the household
- \(\text{Lan} \) = Possession of land by household (acre)
- \(\text{Haz} \) = Frequency of natural hazards faced by household during January 2009 to December 2011 (number)
- \(\text{Nil} \) = Amount of non-institutional loan taken during January 2009 to December 2011
- \(P_i \) = Probability that the household would be food secured
- \(1-P_i \) = Probability that the household would be food insecure
- \(\beta_i \) = Constant

\(\beta_i \) = Coefficient to be estimated
\(\mu \) = Error term of the equation eight

In this study, OLS technique was also used to assess the effect of fishery credit on the household income. The problem of heteroscedasticity was solved using White’s method. The household income model can be written as:

\[
Y = A_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \mu
\]

Where,
- \(Y \) = Mean annual income of the household during 2009 to 2011 (Taka)
- \(X_1 \) = Number of training received by the household from the CBFM project
- \(X_2 \) = Mean annual amount of credit received by the household from CBFM project during 2009 to 2011 (Taka)
- \(X_3 \) = Number of family members in the household
- \(X_4 \) = Mean annual amount of credit repaid by household to the CBFM project during 2009 to 2011 (Taka)
- \(X_5 \) = Annual average of the value of sale of the fishery products (Taka)

\(A_0 \) = Is the constant of equation nine
\(\mu \) = Is the error term of equation nine

RESULTS AND DISCUSSIONS

Opinion of the Borrowers about Their Food Security Status: The prime objective of the study is to assess the opinion of the borrowers on their living-standard in terms of food security. A household having meals at least three times a day was considered as food secured and coded as “one” while a household having two meals or less than that was identified as food in-secured and coded as “zero”. Eight socioeconomic variables were considered as independent variables which were closely related to the borrowers’ livelihood (Table 2). Among these eight variables only three variables such as: (i) number of fishery equipments possessed by the household, (ii) natural hazards and (iii) investment on fishery production were significantly related to the dependent variable. In this study, Hosmer and Lameshow test was conducted and the chi-value was found insignificant which was 2.823 (p-value 0.945). It shows that the model was fitted adequately. The overall accuracy was about 96 percent (Table 2).
In the context of rural Bangladesh, fishermen suffer from lack of investment ability, lack of education and inadequate resource base. Due to lack of investment ability they cannot pursue their economic activities and often suffer from low production. It was expected that project’s credit support would assist the households in increasing their ability to invest on IGAs. Higher level of investment ability would increase their risk bearing and negotiation capability. A household that invests more on IGAs is in advantageous position in terms of production and consumption as compared to a household having lower investment ability. This study showed that household investment on fishery activities was positively and significantly related to the dependent variable “food security status”. It indicates that the household would be more food secured as their investment ability increases. In this study, the probability of being secured by food for the household was 50.02 percent due to additional one unit increase of investment (Table 2). This study result is consistent with the results of researchers [4]. In their study, the authors showed that the investment on fishery activities would increase households’ earnings and their purchasing power.

The fishermen live in the hazard-prone areas. They mainly suffer from various types of natural hazards such as cyclones, flood, heavy raining, drought, disease of the earning members of the family. Due to natural hazards fishermen often lose their employment opportunity temporarily or permanently. Productivity of the fishermen decreases because of natural calamities. Households’ assets are also severely damaged because of natural a hazard which ultimately reduces their investment resulting lower production. They fall in poverty and fail to secure their basic needs like food. This study showed that the natural hazard was negatively and significantly related to the dependent variable. It indicates that household would be more food in-secure as the number of natural hazard increases. The probability for the household to be food secured would decrease 50 percent due to additional one unit increase of natural hazard (Table 2).

Fishermen in Bangladesh do not have adequate equipments to pursue their fishery activities properly due to lack of financial resources. In fact, fishery activities are complex and diverse in nature. Therefore, necessary fishery equipments (such as boat, fishing rods, nets etc.) are essential to operate the fishery activities efficiently and in a profitable manner. In addition, fishery equipments assist fishermen in increasing their negotiation and risk bearing capability. A household with adequate number of fishery equipments is in an advantageous position in terms of fish stocking, catching, processing and marketing activities as compared to a household having fewer fishery equipments. This study shows that number of fishery equipments possessed by the household was significantly and positively related to the household income. The probability for the household to be food secured would increase by 50 percent due to additional one unit increase of fishery equipment (Table 2).

Factors Influencing the Household Income: Household income is related not only to credit facilities but also to other socioeconomic factors such as training, credit repayment, family members in fishing activities, value of fish-selling. It was found that value of fish sale, training and number of family members’ engagement in fishery activities were significantly related to the dependent variable household income (Table 3).

In the context of rural Bangladesh, most of the fishermen have inadequate skills and low level of education which are the major obstacles for them in
Table 3: Influencing factors of household income

<table>
<thead>
<tr>
<th>Variable</th>
<th>Co-efficient</th>
<th>t-value</th>
<th>Level of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>9877.335</td>
<td>3.930163</td>
<td>0.001</td>
</tr>
<tr>
<td>Number of training received</td>
<td>2434.655</td>
<td>2.077442</td>
<td>0.0390</td>
</tr>
<tr>
<td>Number of family members in fishery</td>
<td>30775.91</td>
<td>9.505097</td>
<td>0.0000</td>
</tr>
<tr>
<td>Mean amount of credit received</td>
<td>0.208879</td>
<td>0.129313</td>
<td>0.8972</td>
</tr>
<tr>
<td>Mean amount of credit repaid</td>
<td>-0.221284</td>
<td>-0.228890</td>
<td>0.8192</td>
</tr>
<tr>
<td>Value of sale of fishery product</td>
<td>68.98953</td>
<td>2.406312</td>
<td>0.0170</td>
</tr>
</tbody>
</table>

R-square: 0.819423
Durbin-watson: 1.664116
Source: survey, 2011

CONCLUSION

This study showed that fishery credit program failed to create a significant influence on the household income and food security. Similarly to this study, researchers [4] did not find any significant influence of fishery credit program on the living-standard in terms of household expenditure. In fact, small amount of credit, low level of educational background of the fishermen, insufficient rural infrastructural facilities and lack of input support for production might be the major causes. However, household income was significantly influenced by some factors such as training, value of sales of fishery product and involvement of family members in the fishery activities. Policy makers should consider the following issues for improving the food security status of the fishermen, such as: training should be provided based on the demand of the fishermen. Training center needs to be established in the rural areas so that they can easily participate. It is important to follow up the skills of trainees after getting training.

Government should facilitate to establish more fishery-based industries in the rural areas. Fishermen must be encouraged by the DoF and NGOs to diversify their fishery activities through disseminating modern technology and financial supports. Diversification would open avenues for the family’s unemployed members to involve with the fishery activities. Female members of the family who is unemployed should be encouraged to participate in the economic activities through enhancing their mobility, promoting educational, financial and legal support.

It is important to stabilize the prices of the fishery products in the rural areas. Government should set a floor price for the fishery product. Rural marketing facilities (such as roads, rural markets, cold-storages, dams etc) should be developed so that fishermen can easily market their product on time and receive fair price. Accessibility of the fishermen to the market information should be easy and free. It is also important to establish a sound net-working system among the fishermen, DoF, donor agencies and NGOs.
REFERENCES

12. CBFM. 2006. Annual Report. Community Based Fishery Mangment (CBFM) Project (Phase 2). Department of Fisheries (DoF) and WorldFish Center, Dhaka, Bangladesh.

