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Abstract: This paper presents the author’s scientific hypothesis on the effect of fractal flickering, which exhibits
scale invariance with time, on the evoked responses of the retina [electroretinogram (ERG)] and visual cortex
[visual-evoked cortical potentials (VEP)] in norm and neurodegenerative disorders. A new approach for ERG
and VEP studies is proposed. In the proposed approach, standard stimuli are presented to patients as these
patients adapt to the flickering background with specific chaotic interval variabilities between flashes (dynamic
light fractal). We hypothesized that this approach could be applied to facilitate adaptation to non-linear
flickering with fractal dimensions in electrophysiological diagnostics. This approach could be considered as
a new strategy by which neuronal plasticity is affected. In theory, this method can be used to improve the
condition of patients with diabetic retinopathy, glaucoma and severe neurodegenerative diseases, such as
Parkinson’s and Alzheimer’s diseases.
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INTRODUCTION Mandelbrot was the first to show that fractals are real

Fractal Geometry and Non-linear Dynamics: Fractal irregularities, such as mountain ranges, clouds, roots,
geometry is one of the instruments of chaos theory used branching tree crown, wrinkly coastline and snowflakes.
in mathematics and physics to study several phenomena, To model a wide range of “natural” fractals, such as rough
which are chaotic in terms of Euclidean geometry and surfaces of mountains and forests, accumulations of
linear mathematics. The term “fractal”  proposed by galaxies, flashes of lightning, basins of rivers and other
Benoit  Mandelbrot  in  1975  allocates   irregular similar geometric configurations, scholars in mathematics
geometric objects with fractional metric dimension that use stochastic (random) fractals, such as fractal Brownian
exhibits self-similarity  or  scale  invariance.  Self-similarity motion. Synthetically designed fractals are economically
refers to a particular case, in which a zoomed structure important because of several advantages, such as price
remains unchanged regardless of scale; fractal forms levels on stock exchange [3]. Fractals in physics arise
consist  of  subunits and the structure of these subunits when modeling of nonlinear processes, such as turbulent
is  similar  to  that  of a  macroscopic  object   [1,  2]. fluid flow, complex diffusion-adsorption processes and
Certain examples of the simplest mathematical fractals are flames, among others [2]. Fractals in biology are used to
Koch snowflake, Sierpinski triangle, Peano curve and model populations to describe systems of internal organs
many others. (arterial and venous trees; alveoli in the lungs) [4].

models of many phenomena observed in the real world as
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The physical body of a human is a rich source of factors for Parkinson's disease are aging, genetic
non-linear fractals [5, 6]. The examples include also the predisposition and environmental exposure. Parkinson's
dichotomic ramifying tracheobronchial tree, His-Purkinje disease affects the structure of the extrapyramidal system
networks and neuronal networks in the brain. Fractal-like - basal nucleus and substantia nigra [18]. Among the
structures greatly increase the surface area that is pathogenic mechanisms it has been noted the role of free
available for absorption, facilitate and provide many other radicals that formed during the oxidation of dopamine and
fundamental functions in the organism, for example, may cause the lipid peroxidation in cell membranes and
distribution, collection, transport and the information cell death [19].
processing [cite by 5, 7]. Fractal concept can be applied to Alzheimer’s disease is observed in people aged >65
describe not only irregular geometric forms but also years [20] and the average life expectancy after diagnosis
complex processes with the properties of self-similarity in is approximately seven years [21]. To explain the possible
its course in time (time scale invariance). Fractal processes causes of Alzheimer's disease different hypothesis were
generate irregular fluctuations across multiple time scales put forward. According to the ‘cholinergic hypothesis’,
by analogy scale-invariant anatomical structures that are the disease is caused by the reduced synthesis of the
self-similar across multiple length scales. neurotransmitter acetylcholine. According to the

Studies have shown that healthy human widespread ‘amyloid hypothesis’, the main cause of the
physiological processes - the activity of neurons in the disease are beta-amyloid protein deposits (A ) [22, 23],
brain, the heartbeat rate, breathing, dynamics gait etc. which disrupt calcium ions homeostasis in cells and cause
characterize irregular fluctuations, repeating its structure apoptosis. In accordance with the ‘Tau-hypothesis’, the
at different scales of time [7]. Conversely, disease and changes in the structure of the Tau protein (taupathy)
aging are characterized by the disappearance of the trigger the cascade of disturbances [23]. 
irregularity in fluctuations of physiological functions and Tau protein promotes assembly and stabilization of
by the development of highly ordered rhythm [7, 8], that microtubules, which contributes to the normal neuronal
is, they may reduce the fractal dimension or the degree of function. Slow progressive neurodegeneration is
chaos. associated with the intracellular accumulation of tau

The Application in the Study of Neurodegenerative the neurons [24] that cause their disintegration and
Disorders: In the study of the background electrical destruction; biochemical signaling between cells is also
activity of healthy brain, the chaotic dynamics of alpha disrupted [25, 26].
rhythm in the electroencephalogram (EEG) has been Magnetoencephalogram (MEG) and EEG analyses
revealed [9]. The fractal dimension was proved also in the have been performed using different nonlinear methods
activity of individual neurons and neural networks [10], [27]. EEG and MEG background activity in patients with
which showed many characteristics of chaotic behavior. Alzheimer’s disease were more regular than those in
The time-series studies of hormones levels in the blood healthy elderly persons and multiscale complexity in the
serum [11], of menstrual cycle [12] and other studies have electrical brain activity was reduced. The simplification of
demonstrated the fractal fluctuations of neuroendocrine the background activity dynamics, reduction in fractal
system parameters. The fractal variability in the step-to- dimension has also been found in Parkinson's disease [28]
step interval has also been observed in healthy persons, and other brain disorders, such as schizophrenia [29] and
whereas the fractal dimension of step fluctuation has been epilepsy [30, 31].
decreased in patients with severe neurodegenerative
diseases, such as Parkinson’s and Huntington’s diseases, Applications in the Study of Neuronal Plasticity and
which disrupt balance and gait [7, 13, 14]. Retina Diseases: In neurodegenerative disorders of

Alzheimer’s disease and Parkinson's disease are two different etiologies, an important pattern observed
of the most common incurable neurodegenerative includes the parallel changes found in the structure and
diseases that cause the disability of the working-age electrical activity of the retina and the brain. This finding
adults. In an age group of >60 years approximately 1% has been objectively confirmed in patients with multiple
suffers from Parkinson’s disease [15]; in a population of sclerosis [32-35]. In Alzheimer's disease, there were
individuals aged >85 years approximately 2.6% to 4% detected deposits of beta-amyloid protein in the eye
exhibits this disease [16, 17]. The possible etiological risk tissues [36],  taupathy  in  the retina and optic nerve [37],

protein and the formation of neurofibrillary tangles inside
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reduced levels of acetylcholine, the destruction of retinal and regularities of their changes can enhance our
neurons (first of all, the ganglion cells) [38, 39, 40], the understanding  of  the  pathogenesis of
synaptic degeneration [41] and also visual disturbances, neurodegenerative disorders. This knowledge can also
alterations in the background activity of visual cortex and contribute to the pathogenetic substantiation of new
in the electroretinogram [42]. In Parkinson's disease, therapeutic strategies, in particular, using the nervous
psychophysical, electrophysiological and morphological tissue plasticity.
signs of destruction in retinal structure and function have Plasticity refers to the changes occurring in the
been also revealed [43, 44]. structure (number, size, density packaging), function and

Various aspects of fractal geometry in ophthalmology in the contacts of neurons and glial cells in pathological
attract the attention of researchers [45]. Fractal structure conditions and under the influence of various factors [54].
of blood vessel branching in the fundus has been well Plasticity also refers to the most important aspects of the
studied [46, 47]. In patients with diabetes mellitus the studied modern neuroscience, such as strengthening,
development of diabetic retinopathy is accompanied by a weakening, or adding neural connections that characterize
change in the density and complexity of the vascular tree neuroplasticity; the management of these features can be
and in its fractal dimension [46, 48]. Moreover, statistically very effective in the treatment of brain injury. In some
significant reduction in the fractal dimension of the situations, particularly in patients with brain lesions,
branching pattern of blood vessels has been detected in healthy neurons can perform the functions of the
the macular region of patients with mild to moderate non- damaged or destroyed nerve cells, allowing keeping at
proliferative diabetic retinopathy [48]. least some level of functionality of the damaged areas of

Some examples of the changes in the structural the brain. Reorganization in the architecture of the
complexity of the retina include the truncation and nervous tissue develops in neurodegenerative diseases
elongation of the dendrites and axons of retinal neurons [55].
and the disturbance in the wiring of neural network and Neural plasticity (synaptic and non-synaptic) is
synaptic connections in the later stages of photoreceptor manifested by various mechanisms. Axonal sprouting is
degenerative diseases, resulting in the remodeling of the one of the most common mechanisms. Germinated healthy
architecture and function of the retina, such as retinitis axons form new nerve endings, which may be used to
pigmentosa and retinal detachment [49, 50]. strengthen the existing connections between neurons or

Interesting and potentially important phenomenon to to repair damaged parts, contributing to the recovery of
understand the pathogenesis of neurodegenerative damaged nerve pathways and their functionality. Another
diseases has been recently discovered, that is, the well-known mechanism of neuroplasticity is dendrite
reduction in fractal complexity of dendritic branching and plasticity [51] which is manifested in pathological
length in magnocellular and parvocellular layers of the conditions in the form of enhanced branching, growth of
lateral geniculate nucleus in a primate model of glaucoma dendrites and truncation. 
[51]. These animals have been subjected to memantine We can suppose that the achievements in the field of
treatment; as a result, a simplified dendritic branching research of mechanisms in the control of neuronal
caused by glaucoma is expressed in a lesser degree than plasticity will contribute to the restoration of the cerebral
that without  treatment.   Thus,    dendritic  plasticity  may and overall functionality in persons with nervous tissue
represent the basis for the development of new strategies lesions. This position can be fully valid for the retina and
in the treatment of glaucoma. The disruption of dendritic the entire visual system.
branching is one of the distinctive features and one of The natural, low-amplitude electric background noise
potential mechanisms of neurodegeneration not only in of the retina, including quantum noise, the noise of a
glaucoma but also in Alzheimer’s disease, resulting in a photoreceptor’s synapses and the correlated noise of
disorder in the structure of neural network [52]. Moreover, ganglion cells, largely predetermines the electrical noise
memantine is used as a neuroprotective agent to treat of at the output of the retina and limits the transmission of
cognitive impairment in Alzheimer’s disease [53]. information via parallel visual channels to higher brain

The fractal anatomy of the visual system has been centers [56]. In contrast to the background activity of the
studied for more than 20 years, whereas the chaotic brain, which is successfully investigated by EEG and
dynamics of physiological processes determining visual MEG, the  fractal  dynamics  of  the  natural  electrical
functions remains practically not studied. The scientific noise of the retina is technically difficult to estimate by
knowledge of the non-linear dynamics of visual functions non-invasive methods.
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In a single study of the long-term time-series of retina is usually observed in normal physiological aging;
responses at flickering stimuli (the standard flicker vibrating soles cause a significant increase of multiscale
electroretinogram - flicker ERG) have been recorded and complexity in the intervals between the steps in elderly
the fluctuations in the inter-peak interval have been persons. This method can be used to improve the control
analyzed then with different methods [57]. This study is of postural stability and dynamics of gait and is based on
different from the classical analysis of inter-peak intervals stochastic resonance [58] to facilitate the transmission of
of electrocardiogram and of brain alpha rhythm because a signal by introducing noise to the system. However,
the author has described visual evoked retinal responses, these vibrations do not exhibit the properties of fractal
but not spontaneous activity. The non-linear character of dynamics.
the retina response to light stimulation has been revealed Feedback-controllable phototherapy (chronotherapy)
in the norm; changes in the phase portrait of the flicker is also a known method to correct vision disorders; this
ERG has also been shown in retinitis pigmentosa and method is based on the presentation of a colored
Stargardt’s disease. geometric fractal [61] to a patient. The structure of a

The Hypothesis: We propose a fundamentally different but the rate of switching on and switching off of a fractal
approach in the field of nonlinear dynamics of a visual image is governed by the patient’s pulse frequency and
system to examine the changes in the ERG responses and respiration according to the biological feedback method.
in visual-evoked cortical potential (VEP) responses at However, the dynamics in the frequency of image
standard stimuli but were imposed on flickering presentation is not programmed on the principle of
background with a strictly defined  non-linear  dynamics deterministic chaos.
of fluctuations of the intervals between the stimuli We proposed for the first time the potential
(dynamic light fractal). We aimed to  determine  the application of non-linear dynamic light noise (adapting
influence  of the dynamic chaotic background, which background) with a fractal dimension to influence the
exhibits scale-invariance in time, on the evoked responses mechanisms of nervous system plasticity. This approach
of the retina and visual cortex. For this purpose, we can be theoretically applied to improve the condition of
assume it necessary to compare  the  responses  when patients with diabetic retinopathy, glaucoma and severe
light  stimuli  are  presented  on   a  standard neurodegenerative diseases, such as Parkinson’s and
homogeneous background, on a fractal flickering Alzheimer’s diseases.
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