On Bipolar Fuzzy Subgroups

Tahir Mahmood and Muhammad Munir

Department of Mathematics and Statistics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, Pakistan

Abstract: In this paper, we have introduced the concept of Bipolar valued fuzzy subgroup, Bipolar valued fuzzy normal subgroups and investigate some associated results.

Key words:

INTRODUCTION

In 1965, in his pioneer paper L.A. Zadeh [9] introduced the concept of fuzzy set to handle the uncertainties in our daily life. After that many generalizations of fuzzy sets are presented, for example, interval valued fuzzy sets [10] and intuitionistic fuzzy sets [1]. Fuzzy sets are extremely useful to solve many problems in applied mathematics, information sciences and theory of automata [2]. The concept of fuzzy sets in Algebraic structures was first introduced by Rosenfeld in 1971 and he defined fuzzy subgroups [8].

In [5] K.M. Lee introduced the concept of Bipolar valued fuzzy sets. In [4] Jun and Song applied the notion of Bipolar valued fuzzy sets in BCH-algebra. Recently F. Nisar and others applied the notion of Bipolar valued fuzzy sets in BCI-algebra [7]. In this paper we used the notion of Bipolar valued fuzzy sets in group theory and develop some basic results.

Preliminaries: For undefined terms and notions we refer to [3, 6, 8].

Fuzzy subsets: A fuzzy subset of a non-empty set X is a function \(f: X \rightarrow [0,1] \). The set of all fuzzy subsets of a set X is denoted by FP(X). For \(f,g \in \text{FP}(X) \), we have the following operations on \(\text{FP}(X) \).

\[
(f \vee g)(x) = \max\{f(x),g(x)\} = f(x) \vee g(x)
\]
\[
(f \wedge g)(x) = \min\{f(x),g(x)\} = f(x) \wedge g(x)
\]

For all \(x \in X \).

Let \(A \) be a non-empty subset of a non-empty set X. Then characteristic function of \(A \) is a function \(C_A: X \rightarrow [0,1] \) defined by

\[
C_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{if } x \notin A
\end{cases}
\]

Obviously \(C_A \in \text{FP}(X) \).

Let \(x \) be an element of \(X \) and \(t \in (0,1] \). Then a fuzzy subset \(f \) of \(X \) of the form

\[
f(z) = \begin{cases}
t & \text{if } z = x \\
0 & \text{if } z \neq x
\end{cases}
\]

is called fuzzy point with value \(t \) and support \(x \) or fuzzy singleton subset of \(X \). It is denoted by \(t_x \).

Definition: Let \(G \) be a group and \(f \in \text{FP}(G) \). Then we have the following subsets of \(G \):

1. \(U(f,t) = \{ x \in G : f(x) \geq t \} \), \(t \in (0,1] \). It is called level subset of \(G \).
2. \(f^* = \{ x \in G : f(x) > 0 \} \). It is called support of \(f \).
3. \(f_e = \{ x \in G : f(x) = f(e) \} \). Where \(e \) is identity of \(G \).
4. \(\text{Ker}(f) = \{ x \in G : f(x) = 1 \} \). It is called Kernel of \(f \).

Definition: Let \(G \) be a group and \(f,g \in \text{FP}(X) \). Then, the fuzzy subsets \(f \circ g \) and \(f^{-1} \) of \(G \) are defined as:

\[
(f \circ g)(x) = \sup_{y \in X} \{ \min\{f(y),g(z)\} \}
\]
and

\[
f^{-1}(x) = f(x^{-1})
\]

where \(f \circ g \) is called product of \(f \) and \(g \) and \(f^{-1} \) is called inverse of \(f \).
Definition [6]: A fuzzy subset f of a group G is said to be a fuzzy subgroup of G if for all $x, y \in G$

$$f(xy) \geq \min\{f(x), f(y)\}$$

or equivalently

$$f(x^{-1}) \geq f(x)$$

Definition [6]: A fuzzy subgroup f of a group G is said to be fuzzy normal subgroup of G, if for all $x, y \in G$

$$f(y^{-1}xy) \geq f(x)$$

Definition [6]: Let f and g be two fuzzy subgroups of a group G. Then, f is said to be fuzzy conjugate of g if for some $x \in G$, $f(y) = g(x^{-1}yx)$, for all $y \in G$.

Definition [6]: For a fuzzy subgroup f of a group G, the normalizer of f in G is denoted and defined by

$$N(f) = \{y \in G: f(y^{-1}xy) \geq f(x)\}$$

for all $x \in G$.

Definition [6]: Let f be a fuzzy subgroup of a group G. Then, fuzzy left coset of f in G determined by $x \in G$ is a fuzzy subset f^l of G defined by $f^l(y) = f(x^{-1}y)$.

Fuzzy right coset of f in G determined by $x \in G$ is a fuzzy subset f^r of G defined by $f^r(y) = f(xy^{-1})$.

Definition [6]: A fuzzy subgroup f of a group G is said to be abelian fuzzy subgroup of G if and only if for all $x, y \in G$,

$$f(xy) = f(yx)$$

Remark [6]: Let f be a fuzzy subgroup of a group G. Then

$$N(f) = \{y \in G: f(xy) = f(yx), \forall x \in G\}$$

Theorem [6]: Let f be a fuzzy normal subgroup of a group G. Then, for all $x_1, x_2 \in G$,

$$f^l \circ f^r = f^r \circ f^l = f$$

Bipolar Valued Fuzzy Subgroups

Let X be a non empty set. A Bipolar valued fuzzy subset B of X is an object having the form

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

where $f^+: X \to [0,1]$ and $f^- : X \to [-1,0]$ are mappings. The positive membership degree $f^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a Bipolar valued fuzzy subset

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

and the negative membership degree $f^-(x)$ denotes the satisfaction degree of an element x to some implicit counter property corresponding to a Bipolar valued fuzzy subset

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

If $f^+(x) \neq 0$ and $f^-(x) = 0$, it is the situation that x has only positive satisfaction

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

If $f^+(x) = 0$ and $f^-(x) \neq 0$, it is the situation that x does not satisfy the property of

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

but somewhat satisfies the counter property of

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

It is possible for an element x to be such that $f^+(x) \neq 0$ and $f^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X [5]. For our convenience from now onward instead of writing

$$B = \{(x, f^+(x), f^-(x)) : x \in X\}$$

we will write $B = \langle f^+, f^- \rangle$.

Definition: Let $B_1 = \langle f^+, f^- \rangle$ and $B_2 = \langle g^+, g^- \rangle$ be two Bipolar valued fuzzy subsets of a group G. Then the Bipolar valued fuzzy subset $B_1 \lor B_2$ and $B_1 \land B_2$ of X are defined as

$$B_1 \lor B_2 = \langle f^+ \lor g^+, f^- \lor g^- \rangle$$

and

$$B_1 \land B_2 = \langle f^+ \land g^+, f^- \land g^- \rangle.$$
Definition: Let G be a group and $A \subseteq G$. Then Bipolar valued Characteristic function of A is given by $C_A = <C^+_A, C^-_A>$, where

\[
C^+_A(x) = \begin{cases}
1 & \text{if } x \in A \\
0 & \text{otherwise}
\end{cases}
\]

\[
C^-_A(x) = \begin{cases}
-1 & \text{if } x \in A \\
0 & \text{otherwise}
\end{cases}
\]

Obviously Bipolar valued Characteristic function is Bipolar valued fuzzy subset of G.

Definition: Let x be an element of a group G and $t \in (0,1]$. Then a Bipolar valued fuzzy subset $f=<f^+, f^->$ of G of the form

\[
f^+(z) = t \text{ if } z = x \]

\[
f^-(z) = -t \text{ if } z = x
\]

is called Bipolar valued fuzzy point with value t and support x or Bipolar valued fuzzy singleton subset of G. It is denoted by $x xxt t ,t +− =<>$.

Definition: Let G be a group and $B_1=<f^+, f^->$ and $B_2=<g^+, g^->$ be two Bipolar valued fuzzy subsets of G. Then, the product of B_1 and B_2 is defined by

\[
B_1 \circ B_2 = <f^+ \circ g^+, f^- \circ g^->
\]

Where

\[
(f^+ \circ g^-)(x) = \sup_{z \in G} \left\{ \min(f^+(y), g^-(z)) \right\}
\]

and

\[
(f^- \circ g^+)(x) = \inf_{z \in G} \left\{ \max(f^-(y), g^+(z)) \right\}
\]

Definition: A Bipolar valued fuzzy subset $B=<f^+, f^->$ of a group G is said to be Bipolar valued fuzzy subgroup of G if

\[
f^+(y^{-1}xy) \geq f^+(x)
\]

and

\[
f^-(y^{-1}xy) \leq f^-(x)
\]

Example: Let $G = \mathbb{C}_4 = \{1, a, a^2, a^3\}$. Then G is a group under usual multiplication of complex numbers. Let $B=<f^+, f^->$ be Bipolar valued fuzzy subset of G such that

\[
f^+(1) = 0.75, f^+(a) = f^+(a^2) = 0.55, f^-(i) = f^-(i) = 0.25
\]

and

\[
f^-(1) = -0.83, f^-(1) = -0.63
\]

Then $B=<f^+, f^->$ is Bipolar valued fuzzy subgroup of G.

Theorem: Let H be a non-empty subset of a group G. Then, $H \subseteq G$ if and only if its Bipolar valued characteristic function $C_H = <C^+_H, C^-_H>$ is Bipolar valued fuzzy subgroup of G.

Theorem: A Bipolar valued fuzzy subset $f=<f^+, f^->$ of a group G is bipolar valued fuzzy subgroup of G iff its level subset

\[
U(f, t) = \{x \in G : f^+(x) \geq t, f^-(x) \leq -t\}
\]

for all $t \in (0,1]$ is subgroup of G.

Theorem: Let $\{f_a = <f_a^+, f_a^-> : a \in I\}$ be a collection of Bipolar valued fuzzy subsets of a group G. Then, Λf_a is a Bipolar valued fuzzy subgroup of G.

Definition: A Bipolar valued fuzzy subgroup $f=<f^+, f^->$ of a group G is said to be Bipolar valued fuzzy normal subgroup of G if

\[
f^+(y^{-1}xy) \geq f^+(x) \text{ and } f^-(y^{-1}xy) \leq f^-(x)
\]

Example: Let $G = S_3 = \{1, a, a^2, b, ab, a^2b\}$ and $B=<f^+, f^->$ be a Bipolar valued fuzzy subset of G such that

\[
f^+(1) = 0.85, f^+(a) = f^+(a^2) = 0.65
\]

\[
f^+(b) = f^+(ab) = f^+(a^2b) = 0.40
\]

and

\[
f^-(1) = -0.90, f^-(a) = f^-(a^2) = -0.59
\]

\[
f^-(b) = f^-(ab) = f^-(a^2b) = -0.30
\]

Then $B=<f^+, f^->$ is a Bipolar fuzzy normal subgroup of G.

Definition: Let $f=<f^+, f^->$ and $g=<g^+, g^->$ be two Bipolar fuzzy subsets of a group G. Then, $f= <f^+, f^->$ is said to be fuzzy conjugate of $g=<g^+, g^->$ if for some $x \in G$,
\[
f^*(y) = g^*(x^1y)
\]
\[
f(y) = g^*(x^1y)
\]
for all \(y \in G\).

Definition: For a Bipolar valued fuzzy subgroup \(f=<f^+, f^+>\) of a group \(G\), the Normalizer of \(f=<f^+, f^+>\) is denoted and defined by

\[
N(f) = \{y \in G: f^*(y^{-1}xy) \leq f^*(x)\}
\]
and \(f^*(y^{-1}xy) \leq f^*(x)\), for all \(x \in G\).

Theorem: Let \(f=<f^+, f^+>\) be a Bipolar fuzzy subgroup of a group \(G\). Then, \(N(f)\) is a subgroup of \(G\) if and only if \(N(f) = G\).

Proof:

1. Let \(y_1, y_2 \in N(f)\). Now for any \(x \in G\),

\[
f^*(y_1^{-1}xy_2) = f^*[(y_2y_1)x(y_1y_2)] = f^*[(y_2y_1)x] = f^*(y_1^{-1}xy_2)
\]

Now for any \(x \in G\),

\[
f^*(y_1^{-1}xy_2) = f^*(y_1^{-1}x) = f^*(y_1^{-1}x)
\]

and \(f^*(y_1^{-1}xy_2) \leq f^*(x)\),

\[
y_1y_2 \in N(f)
\]

Definition: Let \(f=<f^+, f^+>\) be a Bipolar valued fuzzy subgroup of a group \(G\). Then,

Bipolar valued fuzzy left coset of \(f=<f^+, f^+>\) in \(G\) determined by \(x \in G\) is a Bipolar valued fuzzy subset \(f^+ = f^+; f^+ >\) of \(G\) i.e. \(f^+ : G \to [0, 1]\) defined by \(f^+(y) = f^+(x^1y)\) and \(f^+ : G \to [-1, 0]\) defined by \(f^+(y) = f^+(x^1y)\).

Bipolar valued fuzzy right coset of \(f=<f^+, f^+>\) in \(G\) determined by \(x \in G\) is a Bipolar valued fuzzy subset \(f^+ = f^+; f^+ >\) of \(G\) i.e. \(f^+ : G \to [0, 1]\) defined by \(f^+(y) = f^+(yx^1)\) and \(f^+ : G \to [-1, 0]\) defined by \(f^+(y) = f^+(yx^1)\).

Conversely assume for all \(x, y \in G\), \(f^+ = f^+\) and \(f^+ = f^+\). To prove \(f=<f^+, f^+>\) is Bipolar valued fuzzy normal subgroup of \(G\).

Now for any \(x, y \in G\),

\[
f^+(yx) = f^+(yx) = f^+(yx) = f^+(yx)
\]

Similarly

\[
f^+(yx) \geq f^+(y)
\]

\[
f^+(yx) \leq f^+(y)
\]

\[
1809
\]
\[f = \langle f^+, f^- \rangle \text{ is Bipolar valued fuzzy normal subgroup of } G. \]

Definition: A Bipolar valued fuzzy subgroup \(f = \langle f^+, f^- \rangle \) of a group \(G \) is said to be Bipolar valued fuzzy abelian subgroup of \(G \) if and only if for all \(x, y \in G \),

\[f^+(xy) = f^+(yx) \text{ and } f^-(xy) = f^-(yx). \]

Theorem: For a Bipolar valued fuzzy subgroup \(f = \langle f^+, f^- \rangle \) of a group \(G \) the following are equivalent:

- \(f = \langle f^+, f^- \rangle \) is Bipolar valued fuzzy abelian subgroup of \(G \),
- \(f = \langle f^+, f^- \rangle \) is Bipolar valued fuzzy normal subgroup of \(G \).

Remark: Let \(f = \langle f^+, f^- \rangle \) be a Bipolar valued fuzzy subgroup of a group \(G \). Then,

\[N(f) = \{ y \in G : f^+(xy) = f^+(yx) \} \]

and

\[f^-(xy) = f^-(yx), \text{ for all } x \in G \]

Theorem: Let \(f = \langle f^+, f^- \rangle \) be a Bipolar valued fuzzy subgroup of a group \(G \). Then, the cardinality of \(\{ f^0 = \langle f^{0+}, f^{0-} \rangle : u \in G \} \) is equal to index of \(N(f) \) in \(G \), where \(f^0 = \langle f^{0+}, f^{0-} \rangle \) is Bipolar valued conjugate fuzzy subgroup \(G \) defined by

\[f^{0+}(x) = f^+(u^{-1}xu) \text{ and } f^{0-}(x) = f^-(u^{-1}xu), \text{ for all } x \in G. \]

Proof: To prove \(T = \{ f^0 = \langle f^{0+}, f^{0-} \rangle : u \in G \} \) and \(T = \{ uN(f) : u \in G \} \) are equivalent.

Define \(\phi : T \to T^* \) by \(\phi(f^0) = uN(f) \). For any \(u_1, u_2 \in G \),

\[f^{u_1} = f^{u_2}; \]

\[f^+(u_1^2xu_1) = f^+(u_1^2xu_1), \text{ for all } x \in G \]

\[f^-(u_1^2xu_1) = f^-(u_1^2xu_1), \text{ for all } x \in G \]

Similarly, \(f^{u_1} = f^{u_2} \)

\[f(u_1^2xu_1) = f(u_1^2xu_1), \text{ for all } x \in G \]

\[f(u_1^2xu_1) = f(u_1^2xu_1), \text{ for all } x \in G \]

\[u_1^2u_1 \in N(f), \text{ } u_1N(f) = u_2N(f) \]

so, \(\phi \) is bijective from \(T \) to \(T^* \). Hence the result.

Remark: With usual meanings, \(1o f^0 = f^{0+} \), \(1o f^0 = f^{0-} \) and \(f^0 o 1 = f^{0+} \), \(f^0 o 1 = f^{0-} \).

Theorem: Let \(f = \langle f^+, f^- \rangle \) be a Bipolar valued fuzzy normal subgroup of a group \(G \). Then, for all \(x_i, x_j \in G \),

(i) \(f^{x_i} \circ f^{-x_j} = f^{x_j} \circ f^{-x_i} = f^{-x_i} \circ f^{x_j} \).

(ii) \(f^{x_i} \circ f^{-x_j} = f^{x_j} \circ f^{-x_i} = f^{-x_j} \circ f^{x_i} \).

Theorem: Let \(G \) be a group and \(f = \langle f^+, f^- \rangle \) be a Bipolar valued fuzzy normal subgroup of \(G \). Then, the set \(G/f = \{ f^{(i)} : f^{(i)} > 0 \} \) is group. (It is called a factor group or quotient group).

Proof: For

\[f^{(i)} = \langle f^{i+}, f^{i-} \rangle > \in G/f \]

define

\[f^{i+} o f^{-i} = f^{i+} o f^{i-} o f^{i+} o f^{-i} >. \]

Then, \(G/f \) is closed.

Also, “\(o \)” is associative in \(G/f \). If \(e \) is identity in \(G \), then \(f^{(e)} = \langle f^{e+}, f^{e-} \rangle > \in G/f \) and for all

\[f^{(i)} = \langle f^{i+}, f^{i-} \rangle > \in G/f \]

\[f^{i+} o f^{i-} = f^{i+} \]

and

\[f^{i+} o f^{i-} = f^{i+} \]

\[f^{i+} o f^{i-} = f^{i+} \]

\[f^{i+} o f^{i-} = f^{i+} \]

So

\[f^{i+} o f^{i-} = f^{i+} \]

\[f^{i+} o f^{i-} = f^{i+} \]

\[f^{i+} o f^{i-} = f^{i+} \]

is identity in \(G/f \).

Also as for every

\[f^{(i)} = \langle f^{i+}, f^{i-} \rangle > \in G/f \]

we have

\[f^{(i)} = \langle f^{i+}, f^{i-} \rangle > \in G/f \]

such that
\[f^+_i \circ f^-_i = f^+_i \circ f^-_i \circ f^+_i \circ f^-_i > \]
\[= f^+_i \circ f^-_i \circ f^+_i \circ f^-_i > \]

and

\[f^+_i \circ f^-_i = f^+_i \circ f^-_i \circ f^+_i \circ f^-_i > \]
\[= f^+_i \circ f^-_i \circ f^+_i \circ f^-_i > \]

So for every \(f^+_i \in G/f \)

\[f^+_i, f^-_i \in G/f \] and \(f^+_i, f^-_i \) acts as inverse of \(f^+_i \) in \(G/f \).

Hence \(G/f \) is group.

REFERENCES