
World Applied Sciences Journal 27 (9): 1175-1182, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.27.09.1627

Corresponding Author: Nadia Dilawar, Department of Computer Science, Abdul Wali Khan University, Mardan, Pakistan.

1175

A Review of Power Efficient Load Balancing Algorithms for Multicore Systems

Nadia Dilawar, Muhammad Zakarya and Izaz Ur Rahman1 1 2

Department of Computer Science, Abdul Wali Khan University, Mardan1

Brunel University, London, UK2

Abstract: High performance computing including parallel and distributing systems now focus on power
efficient execution. This is not only to the rising energy cost but these systems are playing a major role in global
warming and greenhouse gas emissions. The birth of multicore systems is a major cause of huge power
consumption and producing a lot of heat. Cores are the fundamental units that read and execute instructions
in a computer program. A single core CPU has only one core that executes single instruction at a time.
A multicore CPU has more than one independent processing core on a single chip to increase throughput and
performance. Theoretically, by adding extra core to the same chip double the performance, but in practice speed
of each core is slower than the single core processor. Likewise executing more instructions increases power
consumption and thus produce extra high temperature. Soft-wares are written for multicore platform that
distribute the workload amongst multiple identical or different cores. This functionality is called thread-level
parallelism. These particular methods are called load balancing mechanism. In this paper we have summarized
a number of load balancing algorithms that minimize the power consumption of multicore technology while
maintaining performance to the best level. We have also compared two important algorithms proposed in the
literature in terms of faster execution time and power efficiency.

Key words: Multicore Energy efficiency Load balancing Distributed computing Scheduling

INTRODUCTION parallel execution of the threads. The main purpose of this

To use the multiple cores efficiently, the distribution parallel on different cores [1]. The task is divided into a
or partitioning of threads among the cores is a critical and number of jobs and then these jobs are scheduled to
important concern. Multi-core hardware can increase the individual cores. Dependability of different jobs must be
performance and save the power consumption in a much considered when deciding to push jobs to core for
better way if all the cores stay similarly active. If the cores execution. For example all jobs having dependency must
are not equally loaded, some cores will be overloaded and me pushed to same cores to eliminate communication
slow while other are idle and waste the CPU cycles. In overhead or push then to neighboring cores to minimize
worse, inappropriate workload partitioning can increase the communication overhead.
massage passing among cores and disputes for shared
resources which reduce the performance significantly. To Communication Phase: Due to some reasons tasks can't
execute a workload on multicore processors the workload be executed concurrently those who were planned to be
must be distributed amongst different cores using some execute in parallel. In general, those tasks will be executed
proper mechanism or algorithm. There are few basic steps independently. Result of one task may be required to
involve in designing parallel applications: another task, so the data must be transferred between

Partitioning Phase: In the first step of designing passing or data transfer between tasks is specified in
algorithm, designers need to find out the opportunities for communication phase [1].

is to define number of small tasks that they can run in

tasks to allow computation to continue. This massage

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1176

Mapping Phase: In the absolute stage of designing of
parallel algorithm, designers identify where tasks will
execute. "This mapping problem does not arise on
uniprocessors or on shared memory computers because
they provide automatic task scheduling" [2].

Many cores might be homogeneous i.e. all cores
having same characteristics and properties or
heterogeneous i.e. different cores have different
characteristics like speed, architecture, voltage or
frequency scaling to achieve power efficiency [3] and etc. Fig. 1: Power consumption of different system
scheduling tasks for homogeneous cores is likely sample components
than scheduling tasks over heterogeneous cores as in
homogeneous systems all the cores are operating with the frequency or different voltage [7] might create
same frequency and speed. asynchronous interfaces, adding latency, meta-stability

Parallel Programming: Multicore architectures basically In [28] the authors have shown some characteristics of
consist of cluster of SMP nodes. OpenMP [4], MPI [5] multi-core ships and have compared different multicore
and Heterogeneous MPI (HMPI) programming paradigms CPUs. They have theoretically compared some load
can be used for parallelization of instruction codes for balancing algorithms that best fit for homogeneous
such architectures. OpenMP uses shared memory and multicores. Load balancing becomes more tedious when
hence is viewed as a simpler programming paradigm than multiple cores or processors have different processing
MPI which is primarily a distributed memory paradigm. As speed, architecture and different memory or cache. This
OpenMP applications cannot be scaled beyond more than work is an extension to [28], with some simulation results
single SMP node but MPI can be scaled to more SMP and some discussion on heterogeneous multicores or
nodes. MPI based applications may introduce multiprocessors. According to 2005 study the power used
overhead in inter-node communication. Therefore proper by computer servers was about 0.6% of total US
programming mechanism should be implemented over electricity consumption growing to 1.2% when cooling
these multicore architecture to make them efficient. In and secondary infrastructures are involved. In 2005, the
some cases MPI implementation gives better performance cumulative electricity bill for operating servers was $2.7
than the OpenMP implementation, but in other cases billion (for US) and $7.2 billion (worldwide). The entire
OpenMP implementation performs better than the MPI energy spent by servers doubled over the period 2000 to
counterpart and requires less programming effort as well. 2005 in world. Similarly, GHG emission is also getting to a
HMPI are specially designed to concentrate on critical edge. In 2007, it was projected that ICT industry
heterogeneous systems. MATLAB provide a HMPI accounts for about 2% of global CO emissions; this is
toolbox to parallel program heterogeneous systems. comparable to the amount of CO emitted by the

Power Aware Multicores: The superlative approach to consumption of different devices in a computer system. It
diminish power consumption [6] of multi-cores having is clear that the more power is consumed by the CPU.
negligible influence on performance is to use dynamic
voltage & frequency scaling (DVFS). Applying voltage Load Balancing: Load balancing is computer networking
scaling comprehensively to the entire machine would methodology to distribute work load across multiple
decrease energy usage, but may not be always optimal. computers or cores network links, central processing
Instead we propose to exploit the fact that there are units, disk drive and other devices to achieve the optimal
hundreds to thousands of cores and each core can be resource utilization, maximize throughput, minimize
voltage scaled separately, thus employing fine grain response time and avoid over load. In simple terms, load
power management. Individual cores can be voltage and balancing is a method to spread tasks out over multiple
frequency scaled to any arbitrary voltage and frequency resources. By processing tasks and guiding sessions on
in the possible range, but this could be problematic and different servers, load balancing helps a network avoid
cumbrous. Similarly different cores running at different annoying downtime and delivers optimal performance to

and also needed complex power delivery methodology [8].

2

2

aeronautics. The following graph shows power

() ()()=0
(Total ET) = ET core + Task Split Time + Wait Time

n
n i

i n n∑

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1177

users [9]. There are virtual load balancing solutions that In case of splitting the tasks set to fully utilize the
work in a manner similar to virtual applications or server cores, unreasonably dependencies should not be
environments. There are also physical load balancing considered. It is necessary to avoid splitting the
hardware solutions that can be integrated with a network. tasks as it might increase the total execution time of
The method used depends entirely upon the team the task. Execution time of a single task is given by:
implementing the solution and their particular needs. Load
balancing is a computer networking methodology to TotalET = ETcore + (TaskSplittime) + (Waittime)
distribute workload across multiple computers or a
computer cluster, network links, central processing units, Hence total execution time of the tasks set is:
disk drives, or other resources, to achieve optimal
resource utilization, maximize throughput, minimize
response time and avoid overload. Using multiple
components with load balancing, instead of a single Task shifting is more advantageous to utilization
component, may increase reliability through redundancy. than task splitting, if utilization is possible through
The load balancing service is usually provided by light task shifting, huge task must not be considered
dedicated software or hardware, such as a multilayer as it will increase the communication overhead and
switch or a domain name server. hence might reduce performance.

Following are the scheduling techniques that are
briefly discussed in [10]. Related Work: In [13] Bautista proposed a simple

OLB Scheduler: The OLB Scheduler, like those found in This scheduling algorithm moves the extra workload
Resource Management Systems and Distributed OSs, from overloaded cores to the less loaded cores. A
uses Opportunistic Load Balancing (OLB) and assigns the complete task is moves from over loaded system to less
next queued job to the next available machine. loaded cores. This algorithm reduces the energy

LBA Scheduler: The LBA Scheduler assigning each job frequency of the cores. Simple power aware technique
to the machine where it is predicted, assuming that all is never able to maintain the workload equal on cores, so
machines are unused, to execute the fastest (a policy all cores are not equally utilized. Simple power-aware
referred to as Limited Best Assignment or LBA). scheme do not split the task so it move the complete task

Smart Scheduler: The Smart Scheduler assigns jobs to In [14] Raj Kumar introduced the technique of
machines based both upon their expected performance on highest priority task splitting. Task is divided into two
the various platforms as well as the loads on those portions ô' and ô“. t’ of each splitting task is assign to
machines [11]. next processing core and t” is must assign to the last core.

In next section some literature review and recent Every time a task is allocated to a processing core, a
research work is presented for homogeneous and schedulability test ensures that the tasks allotted to a core
heterogeneous multicores. In general the following factors are schedulable with deadline monotonic. The existing
must be kept in front while designing an efficient problem in this approach is that all cores are not equally
algorithm for such parallel and distributed systems [12]. loaded.

Workload must be equally distributed across the which finds the lowest core speed utilization and then the
available cores that are capable of performing their lightest task from the heavy core is shifted to the lowest
executing. loaded cores o maintain the uniform system speed. The
Resources i.e. core utilization should not be wasted. existing problem in this approach is that there is no task
A task should not be allotted to a core that is over splitting and all cores are not equally utilized. An RM
provisioned with respect to that task. algorithm is implemented for fixed priority tasks over
A valid and exact mapping of a task to a core must be multiple cores and has found that all the tasks are optimal
found if such an assignment exists. This process and feasible. They have minimized the energy
must not increase signi?cant overhead to the cost of consumption to some significant level. Fig. 2 [15] shows
executing that specific task. the lowest core speed cores utilization after shifting.

i i i

power-aware scheduling algorithm for multi-core systems.

consumption while increasing or decreasing the

to other core.

In [15] N. Min Allah proposed a scheduling algorithm

i i i iL = w /p - cc /p∑ ∑

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1178

Fig. 2: comparison of lowest core speed and utilization

In [2] Seo presented a dynamic task repartitioning
algorithm that distributes the given workload among the
cores. All cores are divided into two groups, (i) Donator
and (ii) Grantee. Donator moves task to grantee ant the
grantee groups execute these tasks. Algorithm use cycle
conserving is capable to maintain L for all processing
cores so

And Power is reduced using cycle conserving.
There is no task splitting techniques in this approach, Fig. 3: load balancing for multi-cores
hence all cores are not equally utilized. Kato [1] presented
a partitioned scheduling scheme for the multiprocessors. In proposed technique all the processing cores are
This technique assigns the tasks to specific processors considered to be homogeneous, so if the workload is
an such a way that processor one is filled with tasks 100 distributed evenly, all cores will complete their work at the
percent utilized and remaining processor are filled same time. Proposed workload partitioning algorithm can
according to some specific value. A task can be split in be used for reducing the energy consumption in multi-
two subtasks and these two partitioned are assigned to core systems. This proposed algorithm can easily be used
different processor if any processors don’t have the with cycle-conserving technique which can update the
sufficient space. Split tasks are executed in any order. All utilization of each core dynamically on release and
processors are not equally utilized because processor 1 is completion of a task. These tasks are capable to complete
100 percent utilized and the remaining processors are their execution earlier than it’s provided WCET. Fig. 3 [16]
utilized to some specific value. shows 100% balancing for multicores.

In [16] M. Zakarya have proposed a new load In order to make full use of processing cores the
balancing algorithm for scheduling real-time tasks in a authors in [17] proposed a task scheduling algorithm on
multi-core processor technology. They have also the basis of task duplication. There algorithm composed
introduced task splitting concept to balance the load on of three steps of operations so that threads are allocated
each core to minimize its energy requirements. They claim to processing cores more suitably. This algorithm not
for having achieved workload partitioning with 100 only increases the executive efficiency of task scheduling,
percent precision. All cores are 100% utilized. This but also can adjust scheduling sets according to the
algorithm is capable to distribute workload among all number of processing cores. This algorithm reduces
processing cores equally and keep the utilization of all communication overhead and keeps load balancing
processing cores on a verage. This means that no between cores and meanwhile speedup ratio of parallel
processing core is extra loaded or extra burdened. program is improved.

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1179

Table 1: Comparative study of different load balancing algorithm on multicore platform

Energy efficient workload Partitioned Simple power-aware Power Efficient Rate
balancing for real-time fixed-priority scheduling for monotonic Scheduling for
systems over multicore preemptive scheduling multi-core systems multi-coresystems

Workload on each cores 100% Equal 88% Never equal 95%
Task migration m-1 N/A Utilizationof cores are balanced Yes
Task splitting Yes Yes No No
Number of splitted tasks m-1 m-1 No -
Extra load on any core No - Yes Yes
Energy expenditure due to
 unbalanced workload No - Yes Yes
Splitted objects per core At least one and at most two At most one- -
Utilization bound per core 100% with EDF 60% with partitioning DM scheduling - -
Number of splitted portions Two - - -
Execution order of splitted portions Not in parallel and ' before than " - - -1 2

Time complexity (average case) O(n) O(n) O(n) -2 2 2

Task importance Equal Yes - IC based
Scheduling criterion Task period - - Task period

Load balancing over heterogeneous cores is a The performance of multi-core systems relies on an
tedious job. The underlying OS scheduler needs to be effective cache system. Some authors [21] have focused
heterogeneity-aware, so that it can tie jobs to cores on cache i.e. L1, L2 and L3 performance to increase the
according to features of cores. Some of the distinguished core performance. In a multicore processor each core
loads balancing algorithms proposed are [18] and [19]. might have its own private cache or/and might share the
Both of them assume a system with two core types i.e. LCC i.e. last level cache. LCC can also be private for some
fast & slow. These algorithms checks for unceasing cores. Any way if these caches are designed or used in
performance monitoring to conclude optimal task-to-core such a way that communication cost is minimized, core
assignment. IPC-driven algorithm in [18] intermittently utilization will be effected. We can improve the cache
samples tasks, IPC on available cores i.e. fast & slow, to system through adapting the cache usage as per core
decide the relative benefit for each task from running on requirements and if needed store the mostly used
the core i.e. fast. Those tasks that have a higher fast-to- instruction in LCC or in shared cache implementing any of
slow IPC ratio have precedence in execution on the faster the least recently used (LRU), most recently used (MRU),
core, as they might be able to attain a relatively greater mostly used, rare used algorithms.
speed-up there. The method in [19] uses an analogous It is essential to develop efficient scheduling
mechanism, except that the sampling method for tasks is strategies to appropriately allocate core to instructions /
further efficient & robust by using more than one sample tasks. However scheduling is challenging due to its
per core type per task. In addition, the authors in [19] inherent NP-completeness. We should have some new
have also proposed an algorithm that tries to determine a approaches based on Particle Swarm Optimization (PSO)
globally optimal assignment by sampling performance of where numerous candidate solutions (particles) coexist
task groups rather than making local thread-swapping and collaborate indirectly. Each particle ?ies in the
decisions. Both these methodologies promise problem search galaxy looking for an optimal position to
meaningfully improved performance than naïve land. A particle regulates its position as time passes
heterogeneous-agnostic policies with any kind of according to its private familiarity as well as to the
heterogeneous workload, but both are difficult to scale to knowledge it gains from its neighboring particles. In [22]
many cores [20]. the authors have presented a PSO based scheduling

In [10] the authors have designed a scheduling algorithm for distributed cloud computing [23, 24]. Their
framework for managing jobs and resources in a experiments accomplished using CloudSim and job data
heterogeneous computational environment. They from real scienti?c problem show that their proposed PSO
called it SmartNet that not only implements based scheduler balance the studied metrics efficiently as
scheduling algorithms, but also provides the information compared to random assignment based and genetic
essential for these algorithms to make clever judgments. algorithms based schedulers. Similarly a lot of genetic
SmartNet is designed to measure both machine affinity algorithms [29, 30] are available that have tried to optimize
and loads and provide this information to its scheduling the scheduling problem for heterogeneous multicore
algorithms. systems.

()()=0
(Parallel Speedup) = Serial % + 1-Serial % / N

n
n i∑

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1180

Fig. 4: Load balancing for multi-processors [25]

In [25] the authors have proposed a load balancing
algorithm for multi-processors. They have proposed a TL-
PLANE based approach to prioritize the tasks for real-time
systems and have scheduled the tasks to more suitable
processors to maintain their speed. Further they have
implemented task splitting mechanism to utilize all the
processors with the same frequency and speed. They
have reduced the number of tasks which are splitted and
have thus enhanced the execution time of every individual
processor. Fig 4 [25] shows load balancing for
multiprocessors having homogeneous architectures.

CONCLUSION

In this article we have summarized a number of load
balancing algorithms that balance the load amongst a
number of homogeneous cores. Load balancing [26]
utilizes all the cores to its maximum performance and
hence results in removal of energy usage that is wasted
during idle clock cycles. It is shown that load balancing
on heterogeneous cores or heterogeneous multi-
processors is a tedious job. In literature only a few quality
articles have addressed this issue but still no 100% results
are achieved. Many core is not always increases the
performance. There are some cases where performance for
a specific program degrades when executes on more core
as stated by Amdahl’s Law. One reason might be the
dependency of code, which might increase the wait time,
communication overhead and etc. The limitation is
Amdahl’s Law, which states that the parallel speedup is
limited by the serial code in a program i.e.

It is clear from the above equation that if the serial
percentage in a program is large, then parallel speedup
saturates with small number of cores. Efficient and 100%
resource utilization is a key to take full advantage of
performance of computing machines [27]. Similarly
creating unnecessarily dependencies on different
components in the system significantly sinks overall
system performance as it will results in increased
communication overhead. There is a need to implement
genetic algorithms, deferential equation (DE) based
optimization, heuristics based algorithms and Particle
Swarm Optimization (PSO) based intelligent algorithm
to further decrease the power consumption of many
core machines. Load balancing is high performance
computing like cluster, grid and cloud [31, 32] needs
researcher’s attention in academia and research
laboratories. Load balancing is a hot research issue
especially in HPC like clusters, grid and cloud
computing. The heterogeneity of these systems
makes this issue a little bit complex but these factors
must be considered to fully utilize these systems for
maximum utilization and true benefits in terms of service
providers. Performance for cost, benefits to service
providers and efficient resource allocation are the issues
that needs to be addressed.

ACKNOWLEDGMENT

The work is supported by iFuture: A Leading
Research Group in Department of Computer Science,
Abdul Wali Khan University, Mardan. The authors are
thankful to Miss. Rishma Sadaf for her review and
valuable comments.

REFERENCES

1. Kato, S. and N. Yamasaki, 2007. Real-Time
Scheduling with Task Splitting on
Multiprocessors, In Proceedings of the 13th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications
(RTCSA), pp: 441-450.

2. Seo, E., J. Jeong, S. Park and J. Lee, 2008. Energy
Efficient Scheduling of Real-Time Tasks on Multicore
Processors, IEEE Transactions on Parallel and
Distributed Systems.

3. Zakarya, M. and I.U. Rahman, 2012. Towards Energy
Efficient High Performance Computing Perceptions,
Hurdles & Solutions. Technical Journal UET Taxila
(Pakistan).

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1181

4. Duran, A., M. Gonzàlez and J. Corbalán, 2005. 15. Min-Allah, N., H. Hussain, S.U. Khan and
Automatic thread distribution for nested parallelism A.Y. Zomaya, 2011. Power efficient rate Monotonic
in OpenMP. In Proceedings of the 19th annual scheduling for multi-core systems, Journal of
international conference on Supercomputing, Supercomputing.
pp. 121-130. ACM. 16. Zakarya, M., N. Dilawar, M.A. Khattak and M. Hayat,

5. Anne C. Elster and David L. Presberg, 1993. 2013. Energy Efficient Workload Balancing Algorithm
Setting Standards For Parallel Computing: The High for Real-Time Tasks over Multi-Core.World Applied
Performance Fortran and Message Passing Interface Sciences Journal, 22(10): 1431-1439.
Efforts, Theory Center SMART NODE Newsletter, 17. Geng, X., G. Xu, D. Wang and Y. Shi, 2011. A task
Vol. 5, No.3. scheduling algorithm based on multi-core processors.

6. Khan, A.A. and M. Zakarya, 2010. Performance In Mechatronic Science, Electric Engineering and
Sensitive Power Aware Multiprocessor Scheduling in Computer (MEC), 2011 International Conference
Real-time Systems. Technical Journal UET Taxila on, pp: 942-945. IEEE
(Pakistan). 18. Becchi, M. and P. Crowley, 2006. Dynamic Thread

7. Zakarya, M., I.U. Rahman and A.A. Khan, 2012. Assignment on Heterogeneous Multiprocessor
Energy crisis, global warming & IT industry: Architectures. In Proceedings of the 3rd Conference
Can the IT professionals make it better some day? A on Computing Frontiers. Computing Frontiers ‘06.
review. In Emerging Technologies (ICET), 2012 ACM, New York, NY, USA, pp: 29-40.
International Conference on, pp: 1-6. IEEE. 19. Kumar, R. et al. 2004. Single-ISA Heterogeneous

8. Borkar, S., 2007. Thousand core chips: a Multi-Core Architectures for Multithreaded
technology perspective. In Proceedings of the Workload Performance. In Proceedings of the 31st
44th annual Design Automation Conference, Annual International Symposium on Computer
pp: 746-749. ACM. Architecture. ISCA ‘04. IEEE Computer Society,

9. Zakarya, M., A.A. Khan and H. Hussain, 2010. Washington, DC, USA, 64.
Grid High Availability and Service Security Issues 20. Shelepov, D., J.C. Saez Alcaide, S. Jeffery,
with Solutions. A. Fedorova, N. Perez, Z.F. Huang, ... and V. Kumar,

10. Freund, R., T. Kidd, D. Hensgen and L. Moore, 1996. 2009. HASS: a scheduler for heterogeneous
SmartNet: a scheduling framework for multicore systems. ACM SIGOPS Operating Systems
heterogeneous computing. In Parallel Architectures, Review, 43(2): 66-75.
Algorithms and Networks, 1996. Proceedings. 21. Chang, J. and G.S. Sohi, 2006. Cooperative caching
Second International Symposium on, pp: 514-521. for chip multiprocessors. ISCA,
IEEE 22. Pacini, E., C. Mateos and C.G. Garino, 0000. Dynamic

11. Zakarya, M., I.U. Rahman, N. Dilawar and R. Sadaf, Scheduling based on Particle Swarm Optimization for
0000. An integrative study on bioinformatics Cloud-based Scientific Experiments.
computing concepts, issues and problems. 23. Gillam, L., 2010. Cloud computing: Principles, systems
International Journal of Computer Science and applications.
(IJCSI), 8(6). 24. Gillam, L., B. Li, J. O'Loughlin and A.P. Singh Tomar,

12. Zakarya, M., 2013. DDoS Verification and Attack 2012. Fair Benchmarking for Cloud Computing
Packet Dropping Algorithm in Cloud Computing. Systems.
World Applied Sciences Journal, 23(11): 1418-1424. 25. Zakarya, M., Uzma and A.A. Khan, 2013. Power

13. Bautista, D., J. Sahuquillo, H. Hassan, S. Petit Aware Scheduling Algorithm for Real-Time Tasks
and J. Duato, 0000. A Simple Power-Aware over Multi-Processors. Middle-East Journal of
Scheduling for Multicore Systems when Running scientific Research, 15(1): 94-105.
Real-Time Applications, Department of Computer 26. Zakarya, M. and A.A. Khan, 2012. Cloud QoS, High
Engineering (DISCA)Universidad Polit´ecnica de Availability & Service Security Issues with Solutions.
Valencia, Spain IJCSNS, 12(7): 71.

14. Lakshmanan, K., R. Kumar and J.P. Lehoczky, 0000. 27. Shameem Akhter and Jason Roberts, 0000.
Partitioned Fixed-Priority Preemptive Scheduling for Multi-Core Programming - Increasing Performance
Multi-Core Processors, Carnegie Mellon University through Software Multi-threading, INTEL PRESS,
Pittsburgh, PA 15213, USA ISBN 0-9764832-4-6.

WASJ World Appl. Sci. J., 27 (9): 1175-1182, 2013

1182

28. Muhammad Zakarya, Nadia Dilawar and Naveed 31. Randles, M., D. Lamb and A. Taleb-Bendiab,
Khan, 0000. A Survey of Energy Efficient Load 2010. A comparative study into distributed load
Balancing Algorithms over Multicores, International balancing algorithms for cloud computing. In
Journal of Research in Computer Applications & Advanced Information Networking and Applications
Information Technology, pp: 60-68. Workshops (WAINA), 2010 IEEE 24th International

29. Sathappan, O.L., P. Chitra, P. Venkatesh and Conference on, pp: 551-556. IEEE.
M. Prabhu, 2011. Modified genetic algorithm for 32. Fang, Y., F. Wang and J. Ge, 2010. A task
multiobjective task scheduling on heterogeneous scheduling algorithm based on load balancing in
computing system. International Journal of cloud computing. In Web Information Systems and
Information Technology, Communications and Mining, pp: 271-277. Springer Berlin Heidelberg.
Convergence, 1(2): 146-158.

30. Munawar, A., M. Wahib, M. Munetomo and
K. Akama, 2008. A survey: Genetic algorithms
and the fast evolving world of parallel computing. In
High Performance Computing and Communications,
2008. HPCC'08. 10th IEEE International Conference
on, pp: 897-902. IEEE.

