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Abstract: Complexity of any mass task (and, consequently, the minimal computational complexity of algorithm)
is proportional to minimal quantity of operations made by algorithm which are necessary and sufficient for

reception of the required answer of any individual case of this task. Complexity of the most elementary
NP-complete task TSP (“Traveling Salesman Problem”) it is estimated proceeding from features of a structure
of its goal function (power of this set, quantity of domains of this dependence etc.). It is shown, that the most
effective algorithm of the decision of the mass task TSP is exponential algorithm “exhaustive search”. It
concerns also to all other tasks of class NP. In other words, the class P doesn't coincide with class NP.
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INTRODUCTION

For last 40 years hundreds of mass NP-complete
tasks which have the vital applied importance are found
out. The whole meaning of arisen questions consists in
the following. Let for some discrete task it is not possible
to design polynomial algorithm despite of serious efforts
of many mathematicians. In what the reason of these
failures? In that, that such algorithm does not exist in
nature, or polynomial algorithm exists but to find him very
difficultly? This unsolved till now fundamental problem
got a name “problem P versus NP” [1, 2, 3].

Does polynomial algorithm of solution at least one
NP-complete task is exist? If yes, then it would be
possible successfully and quickly to solve any tasks from
class NP by means of their reduction to this successful
NP-complete task. There is a large variety of the points of
view on this question (for example, [4], [5], [6]).

The full version of this article: http://www.rst-
valeyev.ru/page.php?id=spec.

Preliminary Remarks: How dimension hereinafter
understands a certain parameter of a mass task which
anyhow defines or quantity of examined objects, or -
quantity of actions which essentially should be present at

algorithm of the solution of a task. Algorithms are
understood only as algorithms, which allow to receive
exact answers of tasks. In square brackets there are words
which are clear from a context and can be missed.

It’s often that there is no difference between
floncepts “variable” and “value of variable” in mathematic
practice. In general
comprehension isn’t fair. That’s why here and than such
comprehensions as “variable” and “value of variable”
will be strongly differ from each other and mean
respectively “set which members define or change any

case such unification of

3

dependence” and “separate member of such set”.

Even more rarely taken note of the fact that such
“separate set members, which is a variable” can be
defined by more than one parameter. Hereinafter let’s
assume that every i-th set member of any set is completely
determined by the parameter P, (which has a only one
value pyas “this set member belongs to a given set”) and
by the finite subset of parameters.

X = {Xy, X3, Xy ...} OF X = {X;, Xp, X3, «ovy X}
X; = {Pg, Pyj, Py, ..., Pij: v Pict = {Po> Dit> Pis -+ Pijs «+os Pict

Uncertainty [about answer] - it’s a fact that there are
two or more options for answer in the task.

Corresponding Author:

Rustem Chingizovich Valeyev, NPO CKTI Joint-Stock Company I.I.Polzunov Scientific

and Fevelopment Association on Research and Design of Power Equipment, Atamanskaya Str.,

3/6, 191167, St-Petersburg, Russia.

1072



World Appl. Sci. J., 24 (8): 1072-1083, 2013

Definitions: N-dimensional space of a task - the Descartes
product of N sets. Each of these N sets is the set of all the
values of one of the N (where N=n) variables that exist in
the task (n is the quantity of unknowns).

“Oracle”, “from the point of view of the oracle” is a
paraphrases of a short formal wording of “objective
reality existing in the real world. Similarly, “customer”,
“developer” and “user” of algorithm (all these roles can
be united the term “detached onlooker”) — is convenient
paraphrase of the wording “a man trying to solve a task”.

Possible answer [of a task] - any point of
N-dimensional space of this task.

Forbidden answer - any point of N-dimensional space
which does not belong to any of limitations declared by
the developer of algorithm.

Allowable answer - any point of N-dimensional space
which is not the forbidden answer.

Exact answer - a subset of allowable answers;
each set member of this subset completely satisfies to
all those conditions which contain in initial data of this
task.

Set of FPR,; of objective virtual limitations of the mass
task T, — the subset of all necessary and sufficient
parameters, which in terms of the oracle should be
stipulated in algorithm in order to completely define the
exact answer of T..

Obligatory value of parameter of a task T, — value of
any member of set FPR,.

Correct algorithm — an algorithm applied to solve the
tasks for which it is destined, from the point of view of the
oracle.

Exhaustive search — algorithm using detection of any
and all set members of the set and determining the value
(s) of each member of this set.

Set of subjective limitations of FPA, of a task T,— the
set members of FPR; which values can specify the
developer of algorithm.

Set of obligatory operations OPR; of a mass task
T, — set of all necessary and sufficient (from point of view
of oracle) actions without fulfilment of which the correct
algorithm of the decision of T, is incompetent.

Set of prospective operations OPA; of mass task
T, — a subset of all obligatory operations which the
developer of algorithm can provide.

Criterion of competence of algorithm ACr, — the
expression defining possibility of receiving by means of
this algorithm exact answers of the mass task T,

If FPA,= FPR,(i.e. these two sets consist of the same
elements) and simultaneously OPA,= OPR,, then ACr; = 1.

Acr,= 0.5 x ([FPA,/|FPR|+/OPA, |OPR))

Competent algorithm [of task T;] - correct algorithm
which ACr, = 1.

Axiom 1: Any mass task T, is completely and uniquely
defined by the set of objective virtual limitations of FPR,
without the indication of values?? which define individual
cases of T,.

More than obvious disadvantages of using
definitions of “polynomial” and “exponential” as a
criterion for the feasibility of something in real world
sometimes brings mess in the term “efficient algorithm”.
Therefore, the concept of “accessibility” are using for
further convenience, simplicity and unambiguity of the
question of the efficiency of algorithms (see also [8], [9]).

Definition: Accessibility of parameter A - opportunity for
developer to realize application for all possible values of
parameter A in order to get an exact answer for any of the
individual cases of the mass task.

Effective can be only such algorithm, which the
process of obtaining the required answer fit into the
frameworks of astronomical time within which the
receipt of this answer still has at least some practical
sense.

In addition to well-known terms of “mass task” and
“individual [case of ] task” relation to some of the tasks
on discrete structures it is convenient to use concepts
“group [case of | task” and “domain [case of | task”,
“domain” algorithm”, “mass algorithm” etc (Fig. 1).

Consequently, the complexity of the algorithm ALG;
for solving of some mass task T, is determined by three
parameters:

*  Quantity of obligatory values of parameters which
such algorithm must process to get the exact answer
of any individual case of T;;

* Quantity of obligatory operations which such
algorithm must commit to get an exact answer of any
individual case of T;;

*  Power of set “mass algorithm”

‘ALG|| = |{ ALGH? ALGiZa ALGi37 }|

For the analysis of structure of the task TSP it is
convenient to consider the measuring parameters
(quantitative sets) separately from the topological
properties (matrixes).
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Hecans
—

1) individual case

2} group case

4) mass fask

Here:

Qx.. i-th member of set ‘indegendent variohle X': parameter P apprapriated fo fhis member: i-th initial graph node”

Y '§> - j-th member of set “ndependent varighle Y7 paramefer P appropriated fo fhis member: “j-th final graph node”

d - If-th member of sef ‘independent variable d': parameter P, appropriated fo this member: tength of a tree edge between
i-th initial and j-th final graph nodes’: members {x;, y,. d,} form subsef £ “unforbidden free edges’

“s=s. - jj-th member of sef T ‘forbidden tree edges [in the given individual fask “TSP'J’

ke - nonexistent free edge (member of set UE)

S

~FLr - sef member of sef Ul of not making sense tree edges

Fig. 1: Individual, group and domain cases of the mass task TSP for n = 8 and the mass task TSP
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About Independent Variables: How often, a set A
“independent variable” is some series of numbers or the
set of quantitative values of some function. But at many
tasks on discrete structures this set can be the set,
where parameter P,; of an element a; is not quantitative
value (an example — the task TSP).

And, in theory, nothing prevents the fact that the
value of parameter P ; of element a; in a set A subject to
more than one functional dependency.

Consequently, the situation when as the parameter of
values of variables numbers from any numerical series
appear, values of any functions, etc., represents only
special case of a special case.

Independent Variables and Arguments of Goal Function
in the Task TSP: In the task TSP independent variables
declared by the user and those parameters, which are
arguments of goal function is not same (otherwise the

Here:

problem P vs NP would not exist). Moreover, they are
connected (or, perhaps, are divided) by combinatory
dependence. This dependence a priori does not submit to
the compact quantitative (analytical, functional,
calculated) laws and leaves very few chances of creation
of polynomial algorithms.

Hereinafter under arguments of goal function of
considered (individual, group, domain, mass) task TSP are
understood all those arguments of this dependence,
which the developer is obliged to set for the successful
decision of all without exception of the individual cases
forming considered task.

Theorem 1: All quantitative values except for quantity of
graph nodes, declared by the user of algorithm in initial
data of any individual case of the task TSP (i.e. values of
independent variables), represent functions which are
differed from each other and are not depended on each
other.

3 ii borders of set M of all independent
o varigbles of individual fask

U= P, U, f
Wy, = "rEf] = (’rd: Tf

Phoein 2 (100

e } —
E=fo, € 6 ooy 6 oK e 120

T=fy by o by s b

QX. if-th element of sel ‘independent variable X parameter P, oppraprialed o this element: i-th inifial graph node”

fi = J-th element of set “independent variable Y parameter P, appropriated fa this element: j-th final graph node’
d,I - ij-th element of sef “independent variohle d" parameter P, approprioted fo this element: “lengih of a free edge between

i~th initial and j-th final graph nodes”

€ - 4j-th sel member of the set £ ‘unforbidden free edges in the given mdividual fask 'TSP"; this declared by fhe user sel members
B are convemen! for inferpreting as vectors with the beginmig m fhe beginning of coordinales
< - ij-th sef member of set WZ ‘matrix of making sense free edges [in the given individual fask TSP

—

b= - jj-th sef member of subset WT ‘mairix of forbidden free edges’:

i
R
B

set member of set WUE ‘malrix of nonexisfent free edges’

<& - --"- of subsel WE ‘matrix of unforbidden free edges’

<& - sef member of set WUL “matrix of not making sense free edges” (edges which have na usefut physicat sense for algoriffm)

fy () - goal function (fhe sum of lengths of all free edges of a roufe)

| || - sign of the exact answer {i.e. a condition which reveals the exact answer ameng ather atlawable answers)

Fig. 2: Set of all independent varibles in the taks TSP (interpretation as the three-dimensianal ordered space)
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ﬁ answers of Ihis individual fask

i '.i borders of set @ of possible
element's of sef §
(ie. altowable answers] [\~ -

° - exacf gnswer

o
Q

K77 e edges

Here:
Q - sef of possible answers
S - sef of allowable answers
WQ - matrir of the set of possible answers (two-dimensional inferprebation)
L - parameter determining fhe exact answer {length L of @ route)
o - valves of parameter L for allowable answers which are not exact answer

® - volue of parameter | for ollowable answer which is the {rpr;r}frm’f exacl answer

Fig. 3: Set of allowable anwers in the task TSP (interpretation as the three-dimensional ordered space)

one o Alliwatlle Diewers . T _
/ R PR TR S il i RO

M b - \ _ |

!:! | ;- E o oo iy e eween o

éfi I g nel il

ii \ R=l; 4 1y | j..wh,,,,, |

Ei sL=detdptdottde o~ /48 1 e

By T M R
NeiE TIE B n:‘lx"—;f'

W - 52/ of oependeet vaviabies of (Us) k! fusk "T3P"
W - 20! of arguoents of goa Fanctin of {Mis! induial fast 759"
E - sef of unanbuiet froe edges of e indvin! fagk TSP fe. deriored by fhe wser vechors @ fr.y d
S - auf of ollowokle Bsiers aF e fask TI" el of all [, selislyng fov fhe Fase’s comitions condinations of
fnese vechars - or, Yl fhe zpme fhe sof of it B, resreangenenis of graph mdss/
Q- sof {n o] possbip anzwees of fie fast TS0
iy d - leaght of free sdge

L - fengih &f @ rouite (o, far Ate zame fengf of the ring aaoraprnfe fa il roure/

4 - values of paraneler | for alaweble answers v are et e unct aeseer

@ - volor of pareele | o (Gt allowidie dituer whih it (e sor! ongesr

N - qunntity of Me rangey (ntervals! af deickon & @ sef for aat dependeat fram euc efher fon g
) R~ fuctiin fefi, pl determned an i-M raoge fm - inderval) of Hhe sef B
B P « function Farfs, g o) detovained on -5 reage fan A-th mtorvel of fe sef 5

vk vage erestd 0 OV B¢ e 1 vee sy

Fig. 4: Set of independent variables and set of allowable answers in a task TSP with n graph nodes (interpretation in
form of two-dimensional ordered spaces)

1076



World Appl. Sci. J., 24 (8): 1072-1083, 2013

Proof:

The user of algorithm has the right to declare any
positive constant (quantitative item d;) as length of
any unforbidden tree edge (topological item, named
“e 1))

Any constant d; can be considered as the single
value of a certain single-valued function of qw(x;, y;)
defined on a point interval (point range) with
coordinates (X;, y;).

Determined by the graph nodes unforbidden tree

Differs from any other dependence in this and in any
other individual case of TSP;

Doesn't depend on any other dependence in this and
any other individual case of TSP;

Exists (is declared) only on one point interval
(range) with coordinates x; and y, (this interval
doesn't depend on any other such interval “tree
edge” in a n-node graph in this and in any other
individual case).

It is easily possible to prove also the following

edges in any individual case by definition is not obvious statements:
related to each other by any quantitative and/or other
functional dependencies.

Therefore, functions d; = qw;(x;, y;) in any individual
case of the task TSP in general case represent unique
(i.e. existing only on its point ranges in considered
individual case) dependences.

Consequently, from the point of view of the oracle in
TSP the declaration by the user unforbidden tree
edge and the length of d; of this edge means
declaration of one function d; = qw,(x;, y;) which in
general case:

Theorem 2: The values of independent variables of each
individual case of [mass] task TSP are polynomial set of
unique (i.e. existing only for this very individual case)
different from each other and independed on each other
functions.

Theorem 3: The values of independent variables of each
group case of TSP are infinity set of existing only for this
very group case different from each other and independed
on each other functions.

%
ik
ol

N-dimensional space of a fask

(numerical series)

R,
(some function)

N-dimensional space of a task

/—-c

Example 1:

Example 2:
- X
X

Here:
X. - i~th element of set X ‘independent variable X* (ie. i-th valve of variable X), =1 2... v
<> - paramefer P, “the fact of o belonging of the given element fo sef X of i-th element of sef X

ED - value of paramefer F;; ['the guantitative or ofher property, attributed fa an element’f of i-th element of set X
R, - dependence fo which parameter P,; of each value of independent variable X submifs

- range (interval) of definition for dependence R

Fig. 5: Discrete independent variable in a task: parameter P, od eash value of this variable submits to 1 depemdence Ry
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N-dimensional space of a fask

N-dimensignal space of a fask

Here: J=¥ L
- i-th element of set X ‘independent variable X* fie. i-th valve of variable X), i=1 2... v
- paramefer P, "the fact of a belonging of the given element to set X" of i-th element of set X

@ - value of paramefer P.,, ["the quantifative or ofher property, affributed fo an element”] of i-th element of sef X

r,, - dependence fa which parameter P, of each value of independen! variable X on j-th interval submits

/ - ranges (intervals) of definition for dependences r,, j=1 2, ... /

Fig. 6: Discrete independent variable in a task: parameter P, of ech value of this variable not submits to 1 dependence
i

00

A

borders of N-dimensional
space of a task

Here
Xand Y - independent variables
A - dependent variable Q,
r,; - dependence to which paramefer £y of each value of independent varigble X on a j-th inferval submifs

I - devendence fo which parameler B, of each vaive of independent variable ¥ on a k-th inferval submits
<« - infervals (ranges) on which dependences r,, are defermined, j=1 2. J (J-3)

% - infervals {ranges) on which dependences r,, are defermined, k=1 2., K (K=5

Q,, - infervals (ranges/ of area of values of dependence f,

Fig. 7: Intervals (ranges) of area of values of dependence f, in N-dimensianal space of a task (N=3, independent
variables X and Y are determined on 3 and 4 intervals accordingly
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Theorem 4: The values of independent variables of each
domain case of TSP are infinite set of existing only for this
very domain case different from each other and
independed on each other functions.

Theorem 5: The values of independent variables of TSP
represent the infinite set of existing only for the TSP
different from each other and independend on each other
functions.

Features of Goal Function of the Task TSP

Theorem 6: In each individual case of the task TSP goal
function is the unique (i.e. not repeating in one other
individual case of TSP) finite set consisting of exponential
quantity of different from each other and independed on
each other functions:

La = fwa(Ea) = f‘Na(eala eaZ’ sy eak9 ..
R fwah(Ea)7 () fWaH(Ea)}
n< HﬁVal(Ea)s fVVaZ(Ea)s Rt f“]ah(Ea)s (4] f‘VaH(Ea)}‘ £ n!! n-+

[es]

, € ) = {fwu(Ey), fw,(E),

Here: fw,(E,) — goal function (minimum of this dependence
is the required exact answer).

E, — independent variables (finite set declared by the
user of unforbidden tree edges of a-th individual
case)

K — power of the set E,, n < K < (n*-n)/2

n — quantity of graph nodes

H — quantity of allowable answers, n < H < n!

d; (x;, y;) — the function defined on a point interval with
limits of range [with interval’s borders] (x;, y;)

x;— i-th initial graph node

y;— j-th final graph node

fw,,( ) — h-th argument of goal function
dj,— m-th argument of function fw,()

Proof:

* The set E, can be viewed as a matrix of independent
variables of WE,, each k-th point of that matrix is not
forbidden and correspondence to length of this tree
edge.

* The set S, can be viewed as a matrix of WS, of
allowable answers. Each h-th matrix’s element is
delivered in uniquely compliance length of L, of
passing only one time through each of n graph’s

nodes of h-th closed route (is unique combination of
n not repeating in h-th closed route unforbidden tree
edges).

« WS, represents a set of all swaps of P, of n-node
graph

IS, =|WS,|=H=P,=n!

* As it is known from combinatorial
dependence of S =F(E,)
measuring dependence.

¢« According to the theorem 2 set members of E, is
unique functions, which are differed from each other
and are not depended on each other

theory,
isn't the functional

qwa= {dij(xb yj) / 1 = 15 27 35 eeey n;_] =
WE,}
n<|qw,| < (n’-n)/2

15 27 35 ey 115 (Xb Y_]) €

* It doesn't require the proof that any combinations of
unique elements of the initial set always form unique
combinations. Therefore each of H set members of
S, by definition is unique, not repeating in S,, set
consisting of n not repeating set members of E,.

*« The exponential quantity of items, each of which
represents polynomial value, is exponential value.

L,=fwy(),h=1,2,3, ... n!

*  Therefore, goal function of L=fw,E,) is unique
exponential set of dependences differing from each
other and are not depending on each other.

Each member of set fw,(E,) "goal function" has the
unique set of values of its arguments. Thus, any
individual case of TSP has polynomial set of values of
independent variables (they declare by wuser) and
exponential set of values of arguments of goal function
(they are created by laws of combination theory and
should be taken beforehand into account in algorithm by
the developer).

In the similar way it is possible to prove statements
for group, domain and mass task TSP:

Theorem 7: In each group case of TSP dependence
between a set of independent variables and exact answers
of each individual case of this group case (i.e. goal
function of this group case) is not repeating in other
group cases infinite set of different from each other and
independed on each other functions,
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independent variables

Fessns

NATURE of values of all independent variables:

subset: fosk :‘ask 0AP r‘ask TSP
in each individuo! cose vl ves of fi 1 depende senies of regl numbers 2 il Fonge,
in each group cose: > <.
in each domain cose:
[ as a whale] in mass task: valves of functisnal dependence ‘series of real pumbers *

QUANTITY of SET

MEMBERS in 'rhe set of all independent variables:

f
subset: osk

ftask O0AP

in each individoal case

infipife guantity af numbers

i each group case:

Jit BTl domai EG5E

[ as a wholef in mass task:

ifinife guantity of numbers

DISTINCTION BETWEEN SET MEMBERS in the set of all independent variables:

subset- fosk: fask OAP task TSP
i each individual case i umerical series oiways differ from & b f
in each group cose:
in each domain cose:

{ as a whole] in mass task:

elements of any nu OiWaYs

DEPENDENCE FROM EACH OTHER of SET MEMBERS in the set of all independent variables:

fask
subset: o task O0AP task TSP
i each individval cose g wmericol series piways submit fo one common (ow o of such saf
in each group case: 3

i each domain case

[ as a whole] in moss lask:

elements of any numerical series glways submit fo one comman (aw

such saf o

dependence between mde.pendem' variables and the exact answer

(i.e. goal function of a task )

NATURE of each set member of the set being this dependence (being this goal function):

subset: fosk fﬂ'sk OAF task TSP
in each individual case s funclional dependence on one interval f infervols and is not funchion
in each group case:
in each domain case: .
[ as o whale] in mass fask: & the same funchionol dependence
QUANTITY of SET MEMBERS in such set:
subset: fosk task O0AP
in each individwal case ffie set cansists of one element
fn each group case:
in egch domain case:

[ as o whole] in mass tosk:

the sef ronsicfs of ane element

DISTINCTION BETWEEN SET MEMBERS in such set:

subse: foske task OAP
in each individual case the sef consists of ane element
i each group case: < R OXK XK X
in each domain case: »
[ as a wholel in mass tosk: the set consists of one element

DEPENDENCE FROM EACH OTHER of SET MEMBERS in such set:

subset: face fask O0AP
i each individual case fhe sef consists of one element
in each group case: <
in each domain rase = <

[ as a whole] in mass task:

TSP

1080

Table 8: Comparison of fundamental properties of various subsets of individual cases of mass task OAP and mass task
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L, = fVy(Ey) = fVy(Bys, By oo By -
Vi (Eyo), ...} a=1,2,3, ...
[TVo(Bp) = {11 (By), TVia(Epo), o.os TVi(Byy), oo f| = oo

D)= (B, fvi(By), ..y

Theorem 8: In each domain case of TSP goal function of
this case is not repeating in other domain cases infinite
set of different from each other and independed on each
other functions.

L= fuc(Ec) = fllc(Ecl, Ey, ..., B, ...
fuca(Eca)a } a= 1, 2,3,
‘fuC(Ec)‘ = |{fuc1(EC1), ﬁlcz(Ecz), ceny fuca(Eca), }‘ =+ o

): {fucl(Ecl)» fch(Ecz)s (]

Theorem 9: In the mass task TSP goal function of this
task is not repeating in other mass tasks infinite set of
different from each other and independed on each other
functions.

L =f(E) = {fu,(E), fu,(E), fu,(E), ..., fu(E), ...}
If(B)] = [ {fu,(E), fuy(E), fuy(E), ...} |=+8

Complexity of Algorithm of the Task TSP: Simple
proofs of theorems 10 ... 17 are based that complexity
[of solution] of a task are directly proportional to the
following values:

»  The quantity of obligatory parameter’s values, which
should process algorithm;

« The quantity of obligatory operations which must
make algorithm.

Theorem 10: Algorithm’s complexity of exact solution
of individual case of the task TSP is an exponential
function from the quantity of graph nodes in this
individual case.

Theorem 11: Any individual algorithm of TSP is unique
finite set of data and descriptions of operations over this
data the implementation of which lead to the getting exact
answer only of this individual task.

Theorem 12: Complexity of algorithm of the exact solution
of any group case of TSP is equal to infinity.

Theorem 13: Any group algorithm of TSP is unique
infinite set of unique individual algorithms.

Theorem 14: Complexity of algorithm of the exact solution
of any domain case of TSP is equal to infinity.

Theorem 15: Any domain algorithm of TSP is unique
infinite set of unique individual algorithms.

Theorem 16: Complexity of algorithm of the exact solution
of the mass task TSP is equal to infinity.

The most effective algorithm for the task TSP is
exponential exhaustive search.

Effective Algorithms for Other NP-Complete Tasks:
Theorem 18: There is no effective (including any
polynomial) algorithm of guaranteed reception in general
case the exact answer for one NP-complete task, P+ NP

Proof:

*  All NP-complete tasks polynomially reduces to the
task TSP.

*  FPA;y# FPR g, ACr, < 1

*  Uncertainty that exists in the task TSP can only be
removed by adding new members to FPA ;.

* Let’s suppose that for a certain task T,, possible to
create an efficient algorithm.

FPA,,,= FPRy,, ACr,,, = |

*+ TSP can not be reduced to T, it’s impossible
polynomially (or otherwise) to convert the member
that is not in the set FPA ¢, into member that is in the
set FPA,,, (Fig. 8).

+ IfT,, can not be reduce to a NP-complete task TSP,
that means that T, is not NP-complete task.

*  Consequently, NP-complete tasks for which it is
possible to create effective algorithm, don't exist.

*  Other tasks, that belong to the class NP and are not
the task of the class P, polynomially reduced to TSP.

*  Consequently, for this tasks holds everything said
here about NP-complete tasks.

*  For the tasks of the class P there exist polynomial
exact algorithms.

* It means, that the class NP does not coincide with the
class P: P=NP.

Comment: Using of concept "availability" give the
obvious illustrations of affinity of problems “P vs NP”
and “primes”.

In Closing: Irregularity is the lack of a uniform law
(or, equivalently, a law that is the set of many
independent from each other laws).

Accident is law inaccessible to the detached
onlooker.

The chaos is an irregular accident.

Essence of the problem P vs NP: it is inalienable
chaos in the discrete sets with exponential (i.e. as much as
big) quantity of set members.
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task T, i which there is wncertainty

task Tg

0 < ACry < 1

"X

ﬂ_)(

— itinl dato of e fask Ty, —

— fask T, i which there is oo uncertainfy, and affempl of reducfion T fo T,

ACry = 1

®

®

o@ — @ restriction s ol declarer

V
|
|
|
|
|
|

L— mitin! dato of the fosk T, —

Hera:
X; - independent variatie it the fask T,
X, - ingspendent variabte in fhe fask T
Y - dependenf variabie i fasks Ty and T,

Q. - e of possiNe gnswers of the fask T, (e, N-timensiong! spoce of ihis lask)
Q, - sef of possible answers of the fosk T, fie. N-dimensianal space of Mis tosk)
—_— - graph af function o foncone! dopendence £ (X1 doclared i the fask T; by develaper of afganithe

- - graph of fimction for funcflonl dependence £(X) i the task T,

——— - graph of funchion for funcfional dependence £.00L declared it the fask T, by developer of aigaritho

@ - sywb' for polinoovl deperdence befwesn Xy and X
(@) - symbol for polinowin! dependence befween @ and O,
(@) - symbot for potinowiat dependence between f0) and £,

o - inoccessble exoct answer of Me fesk T, exisfing in o reality (from Fhe poinf of view of model “T." of Mhis rewiify)
@ - daccessle eract answer of Mhe fosk T, exishing in a reglity (fram Fhe pomf of wew of model ‘T, of iz readify)
o - erocf anrswer of fhe bask T, in set O, (This answer is accessile as ifs posifion in 0, i5 defermined by limitation (X))

Fig. 8: The simplified graphic interpretation of polinomial reduction of one task to anather
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CONCLUSIONS

P=NP

“Concierge’s key” is not existing.

There is a much more interesting problem -
“P[ersonal] C[omputer] vs NP”.

The reason of fact “P#NP” is fundamental and in
general case this reason cannot be removed
irrespective of a level of development of a science
and technologies.
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