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Abstract: In this present work, the fractional derivatives in the sense of modified Riemann-Liouville derivative
and  the  direct  algebraic  method  are  employed  for constructing the exact complex solutions of nonlinear
time-fractional partial differential equations. The power of this manageable method is presented by applying
it to several examples. 
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INTRODUCTION Assume that  denote a continuous

The investigation of exact solutions to nonlinear
Fractional differential equations plays an important role in
various applications in physics, biology, engineering,
signal processing, systems identification, control theory,
finance and fractional dynamics [1-3]. Recently, a large
amount of literature has been provided to construct the
solutions of fractional ordinary differential equations,
integral equations and fractional partial differential
equations of physical interest. Several powerful methods
have been proposed to obtain approximate and exact
solutions of fractional differential equations, such as the
Adomian decomposition method [4,5], the variational
iteration  method  [6-8],  the  homotopy analysis method
[9-11], the homotopy perturbation method [12-14], the
Lagrange  characteristic  method  [15],  the   fractional
sub-equation method [16, 21, 22] and so on.

In [17], Jumarie proposed a modified Riemann-
Liouville derivative. With this kind of fractional derivative
and some useful formulas, we can convert fractional
differential equations into integer-order differential
equations by variable transformation. The direct algebraic
method [18-20] can be used to construct the exact
solutions for some time fractional differential equations.
The present paper investigates for the first time the
applicability and effectiveness of the first integral method
on fractional nonlinear partial differential equations.

The Modified Riemann-Liouville Derivative and the
Direct Algebraic Method: In this section, we first give
some  definitions  and  properties of the modified
Riemann-Liouville derivative which are used further in this
paper.

(but not necessarily differentiable) function. The Jumarie
modified Riemann-Liouville derivative of order  is
defined by the expression:

(1)

Some  properties  of  the  fractional modified
Riemann-Liouville derivative were summarized and three
useful formulas of them are:

(2)

(3)

(4)

which  are  direct  consequences  of  the  equality  d x(t)
= (1 + )dx(t).

Next, let us consider the time fractional differential
equation with independent variables x = (x , x ,...,x , t) and1 2 m

a dependent variable u,

(5)

Using the variable transformation:



1 2

1 1 2 1

( , ,..., , ) ( ),

...
(1 )

m

m m

u x x x t U

tx l x l x−

=

= + + + +
Γ +

( ( ), ( ), ( ),...),H U U U′ ′′=

" " d
d

′ =

0
( ) ( ),

n
i

i
i

u a F
=

=∑

2( ) ( ),F b F′ = +

tanh( ), 0
( )

coth( ), 0

tan( ), 0
( )

cot( ), 0
1( ) , 0

b b b
F

b b b

b b b
F

b b b

F b

− − −= 
− − −
= 
−

= − =









2 23 3 3 0, 0,0 1t x x xx xxxD u au au u auu au t+ + + + = ≤ 

0
0

2
( ,0) 2 tan ,

2
u x x

 
 = −
 
 

( , , ) ( ),
(1 )

tu x y t U x= = −
Γ +

2 23 ( ) 3 3 0U a U aU U aUU aU′ ′ ′ ′′ ′′′− + + + + =

33 0B U aUU aU aU′ ′′− + + + =

0
1, (2 8 )

3 3
abA B ab

a
+

= ± = +

0
4 1, (2 14 )

3 3
abA B ab

a
+

= ± = +

1 tanh( ( )) ,
(1 ) 3

t abU b bik x
a

  +
= − − − − − ± 

Γ +  

World Appl. Sci. J., 24 (8): 1049-1052, 2013

1050

Subject to the initial condition;
(6)

where k, l and  are constants to be determined later; the
fractional differential equation (5) is reduced to a
nonlinear ordinary differential equation:

(7)

wehere .

We assume that Eq. (7) has a solution in the form:

(8)

where a  (i= 1,2,...,n) are real constants to be determinedi

later. F( ) expresses the solution of the auxiliary ordinary
differential equation:

(9)

Eq. (9) admits the following solutions:

(10)

Integer n in (8) can be determined by considering
homogeneous balance [7] between the nonlinear terms
and the highest derivatives of u( ) in Eq. (7).

Substituting (8) into (7) with (9), then the left hand
side of Eq. (7) is converted into a polynomial in F( ),
equating each coefficient of the polynomial to zero yields
a set of algebraic equations for a ,k,c. Solving thei

algebraic equations obtained and substituting the results
into (8), then  we  obtain  the  exact traveling wave
solutions for Eq. (1).

Application to nonlinear fractional Sharma-Tasso-
Olever equation 

We first consider the nonlinear fractional Sharma-
Tasso-Olever equation [22].

(11)

(12)

where a and  are arbitrary constants,  is a parameter0

describing  the  order  of the fractional time derivative.
The function u(x,t) is assumed to be a causal function of
time. For our purpose, we introduce the following
transformations:

(13)

where  is constant.
Substituting (20) into (18), we can know that (18) is
reduced into an ordinary differential equation:

(14)

Integrating Eq. (21) with respect to  yields:

(15)

According to the direct algebraic method at first we
obtain homogeneous balance so we have m = 1.

Hence ,

U = A F + A , (16)1 0

Substituting (23) into (22) and setting all the
coefficients of powers of F to be zero, we obtain a system
of nonlinear algebraic equations and by solving it, we
obtain:

A  = –1, –2 (17)1

Case1: if A  = –11

(18)

Case2: if A  = –21

(19)

By substituting (24) and (25) in Eq. (23), we obtain:

where b  0 and k is an arbitrary real constant.
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And CONCLUSION

where b  0 and k is an arbitrary real constant.

where b  0 and k is an arbitrary real constant.

where b  0 and k is an arbitrary real constant.

For b = 0.

Using the conditions (24) and (26) in Eq. (23), we obtain:

where b  0 and k is an arbitrary real constant. 

And

where b  0 and k is an arbitrary real constant.

where b  0 and k is an arbitrary real constant.

where b  0 and k is an arbitrary real constant.

For b = 0.

The direct algebraic method is applied successfully
for solving the system of nonlinear fractional differential
equations. The performance of this method is reliable and
effective and gives more solutions. This method has more
advantages: it is direct and concise. Thus, we deduce that
the proposed method can be extended to solve many
systems of nonlinear fractional partial differential
equations.
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