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Abstract: In this paper, R is commutative ring with identity and L is K-lattice. We prove that, if p  Spec (L) and
each A L is p-radical finite, then p is sequential Noetherian topological space and is s-compact. Furthermore,
it has only a finite number of distinct irreducible components. Also, it is shown that if the lattice of ideals R is
a principal lattice, then the prime spectrum Spec(R) is a sequential Noetherian topological space. Finally, it is
shown that, if L(R) is a principal lattice and  be the compact open of the Zariski spectrum of R, then R[ ] is
Cohen-Macaulay ring.
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 Cohen-Macaulay ring

INTRODUCTION studied by Gotchev. A topological space X is s-compact

The concept of Noetherian topological spaces arises subcover. In section 2, we present some needed results
naturally in the study of Noetherian rings and is of great on multiplicative lattices with ACC  on  radical  elements.
interest in some areas of mathematics such as Algebraic A topological space X is irreducible if X is non-empty,
Geometry. A topological space (X, ) is called Noetherian and if any two non-empty open subsets of  X  intersect.
if  satisfies the ascending chain condition (ACC for In section 3, it shown that if p Spec(L) and each A L is
short) : every strictly ascending chain U  U ... of P-radically finite, then P is a sequential Noetherian1 2

elements of  is finite [1-4]. Topological spaces that topological space, is s- compact and it has only a finite
satisfy properties similar to ACC have been widely number of distinct irreducible components. In section 4,
studied. In [5], spaces with Noetherian bases have been it is pvoved that  if L(R) is the lattice of ideals of a
introduced (a topological space has a Noetherian base if commutative ring R with identity, then an ideal A of R is
it has a base that satisfies ACC) and many interesting principal as member of L(R) if and only if A is finitely
results about such spaces have been obtained [5-7]. generated and ARP is principal for each maximal ideal P of
Clearly, every Noetherian space has a Noetherian  base R. Also, we show that if L(R) is a principal lattice, then the
but the converse is not true in general. An element p in prime spectrum Spec(R) is a sequential Noetherian
the K-lattice L is said to be prime if ab p implies a p or topological space. Inparticular, it is shown that if L(R) is
b p. Let Spec(L) denote the set of prime elements of L, a principal lattice and  be the compact open of the
which we give the Zariski topology. Zariski spectrum of R, then R[ ] is Cohen-Macaulay.

If p Spec(L), we always give p the relative topology
induced from the Zariski topology on Spec(L). Ascending  Chain   Condition   on   Radical  Elements:

If A L,  we  define  the  p-radical  of  A  to be p-rad We recall the de definitions. We follow the  terminology
(A)  = ^  { P|A } and call A a  p-radical  element   if of [8, 9]. Let (L, ) be a complete lattice with maximal
A = P-rad(A). If p Spec(L), we say that an element A of element  R  and  minimal  element 0=0 . Then L is said to
L is P-radically finite if there exists a compact element F A be multiplicative lattice if L is a multiplicative ordered
such that p-rad(F)=P-rad(A). In this paper, we study monoid such that the multiplication on L distributes over
sequential properties of Noetherian topological spaces. arbitrary joins and such that R is the identity for the
The concept of s-compactness was introduced and multiplication.

if every sequentially open cover of X has a finite
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Definition 2.1: A left lattice module over L, or simply an element A of L is P-radically finite if there exists a compact
L-module, is a complete lattice M, together with a
multiplication L×M M satisfying the following for a,b 
L, {a | } M, A  M, {B | } M :

(i) (ab)A = a(bA);

(ii) (V a ) (V B ) = ^  a B ;,

(iii) RA = A;

(iv) 0  A=0 , where 0  is the element smallest of M.L M M

An element A M is  said  to  be  compact if
whenever A {B | } for some family {B | } of
members of M, then there is a finite subset  such that
A {B | }. If each element of M the join of a family
of compact elements of M, then M is said to be compactly
generated or a CG-module. An L- module  M  is  called a
K-lattice if it is a CG-module and AH is compact for each
compact element A L and each compact element H M.
We say that L is a CG-lattice or K-lattice respectively if
this holds when L is considered as an L-module.
Throughout this paper L will denote a K-lattice whose
maximal element is compact and M will be an L-module
which is also a K-lattice. In this section, will deal with
various applications of lattice concepts to general
topology-i.e., to the general theory of topological spaces.
The ideas of general topology can be most simply
introduced through the concept of a metric space.
Through this paper L will denote a K - lattice whose
maximal element is compact.

In a metric space M, a sequence {x } of points is saidn

to converge to the limit point a (in symbol,), if and only if
lim (x ,a) = 0n n

In this section, we present some needed results on
lattices with ACC on radical elements. See [10-12] for
example, for results on rings with ACC on radical ideals.
Let Spec(L) denote the set of prime elements of L, which
we give the Zariski topology. That is, the closed sets are
the sets of the from V(A) = {P  Spec (L) |A P with A L}.
If p Spec(L), we always give P the relative topology
induced from the Zariski topology on Spec(L). Recall that
a topological space P is said to be Noetherian if P satisfies
the descending chain condition on closed sets. If A L, we
define the P-radical of A to be p–rad(A) = ^{ p| A }
and  call   A    a    P-radical    element   if   A   =  P-rad(A).
If P = Spec(L), we will omit the P. It follows that a subset
P of Spec(L) is Noetherian if and only if L has ACC on the
P-radical  elements   of L.  If  p Spec(L),  we  say  that  an

element F A such that  P-rad(F) = P-rad(A). If P=Spec(L)
we say radically finite for P-radically finite.

Theorem 2.1: If p Spec(L), then each A L is P-radically
finite if and only if P is a Noetherian topological space.

Proof: ( ) Suppose there exists an H L that is not P-
radically finite. Let h H be compact. Then H P-rad(h ).1 1

Let  h H   be  compact  with  h rad(h ).  Then Prad(h )2 2 1 1

< P-rad(h h ) and H P-rad(h h ), and so on, a1 2 1 2

contradiction to P being Noetherian.
( ) To show that P is Noetherian, let H H ...be a1 2

chain  of   P-radical   elements.   Let   H=  Since H is

P-radically finite, there exists a compact  element h H
such  that  P-rad(H)= P-rad(h). Then h H  for some j andj

P-rad(h)  H P-rad(H) = P-rad(h). Therefore H = H  for allj j k

k j.

Irreducible Components and S-Compact on Radical
Elements: We begin this section with the definition of
sequentially closed and sequentially open sets. A subset
A of a topological space X is called sequentially closed if
it has the following property: if a sequence in A
converges in X to a point x, then x A. A subset E of a
topological space X is called sequentially open if X\E is
sequentially closed. For every A X, we denote by  the
sequential closure of A in X, which is the minimal
sequentially closed set in X that contains A, and by [A]s

the set A together with all limits of convergent sequences
of points from the set A . A cover of a topological space
X is called sequentially open if its elements are
sequentially open sets. Recall, let (X, ) be a topological
space. The sequential topology  is the topology on Xs

such that a subset E of X is open in (X, ) if and only if E
is sequentially open in (X, ). A topological space (X, ) is
called sequential if = . A topological space (X, ) iss

called s-compact if (X, ) is compact, or equivalently,s

every sequentially open cover of X has a finite subcover.
A topological space X is irreducible if X is non-empty,
and if any two non-empty open subsets of X intersect.
Equivalently X is irreducible if X  and X is not the
union of two closed subsets different from X. A subset Y
of X is irreducible if it is an irreducible topological space
with the induced topology. Let X be an irreducible
topological space. If there is a point x in X such that

 we call x a generic point of X, see ([13]).
If R is Noetherian ring then Spec R is a Noetherian

topological space (see[2]) and every irreducible closed
subset F Spec(  R)  has a unique generic point (see [3]).
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Let X be a non-empty Noetherian topological space and with the finite complement topology is irreducible exactly
(X) be the set of all irreducible closed subsets of X,

ordered by inclusion. Let  be the supremum of all
ordinals such that there exists a strictly increasing
function P:(0, ) (X) We shall say  that  the  hight  of
X is (denoted h(X) = ) if  is an in finite ordinal and h(X)
=  –11 otherwise. We define the hight of the empty set
to be -1. It is clear that if h(X)<  then h(X) = dim X,0

where dim X is the dimension of the Noetherian
topological space X defined to be the supremum of all
integers n such that there exists a chain Z Z … Z  of0 1 n

distinct irreducible closed subsets of X (see [3]). Also, X
is a Noetherian topological space in which every
irreducible closed subset F has a generic point. Let X be
a Noetherian topological space in which every irreducible
closed subset F has a generic point. So, the space X is
sequential if and only if h(X) .1

Theorem 3.1: If p Spec(L) and each A L is P-radically
finite, then P is sequential Noetherian topological space
and is s-compact.

Proof: Let us suppose that (X, ) is a Noetherian
topological space but (X, ) is not Noetherian. Then theres

exists a strictly decreasing by inclusion sequence F F1 2

… F … of distinct sequentially closed subsets of X.n

For each we choose a point x F /F  and we form then n n+1

sequence . Every sequence  in X has a
convergent subsequence  such that, the set of all 
is equal to the set  and the set  is

irreducible. So, this sequence has a convergent
subsequence  such that the set of all its limit
points  is equal to the set . Then

and therefore . However, the
set  is a subset of the sequentially closed
set .  Thus,   and  hence .
This is a contradiction because .

So, the prime spectrum Spec R is a sequential
Noetherian topological space and every Noetherian
topological space is s-compact. It follows immediately
from Theorem 2.1.

Definition 3.1: The maximal irreducible subsets of X are
called the irreducible components of X.

Example: The irreducible components of the topological
space with the trivial topology is X itself. The irreducible
components of the topological space X with the discrete
topology are the  points  of  X.  The  topological  space X

when X consists of infinitely many points, or consists of
one point.

A Noetherian topological space X has only a finite
number of distinct irreducible components X , X , …, X .1 2 n

Moreover we have that X is not contained in X  fori j j

i=1,2,...,n. Because, let I be the collection of all closed
subsets of the topological space X. Assume that I is not
empty. Since X is Noetherian the collection I then has a
minimal element Y. Then Y can not be irreducible, so Y is
the union Y = Y' Y" of two closed subsets Y' and Y"
different from Y. By the minimality of Y the sets Y' and Y"
both have a finite number of irreducible components.
Consequently Y can be written as a union of a finite
number of closed irreducible subsets.

So Y has only a finite number of irreducible
components. This contradicts the assumption that I is not
empty. Hence I is empty and the Proposition holds. If i is
such that X X  we have that X  is covered by thei i j j i

closed subsets X X  for i j. Since X  is irreducible iti j i

follows that X  must be contained in one of the X  , whichi j

contradicts the maximality of X .i

Corollary 3.1: If P Spec(L) and each A L is P-radically
finite, then P has only a finite number of distinct
irreducible components P , P , …, P .1 2 n

Cohen-Macaulay Ring and Noetherian Topological
Space: Dilworth overcame this in [14], with a new notion
of a principal element. Basically, an element E of a
multiplicative lattice L, is said to be meet-(join) principal if
(A (B:E))E = (AE) B (if (BE A):E = B (A:E)) for all A
and B in L. A principal element is an element that is both
meet-principal and join-principal or A E = (A:E)E and
AE:E = A (0:E), for all A L. A lattice L, is called a
principal lattice, when each of its elements is principal.
Here, the residual quotient of two elements A and B is
denoted by A:B, so A:B = {X L|XB A}. The following
theorem is proved in [15].

Theorem 4.1: Let R be a commutative ring with identity.
Then L(R) is a principal lattice, if and only if, R is a
Noetherian multiplication ring.

Theorem 4.2: Let R be a commutative ring with identity.
If L(R) is a principal lattice, then the prime spectrum
Spec(R) is a sequential Noetherian topological space.

Proof: It follows immediately from Theorem 4.1 and
Theorem 3.1.
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Definition 4.1: Let R be a commutative ring, and P a finite The space of all topology, in general non Hausdorff.
poset (= partially ordered set). We say that A is a ASL Though we cannot describe the points of this space
(algebra with straightening lows) on P over R if the effectively in general, we can describe the topology of the
followings hold. space effectively. The compact open of the spectrum are

ASL-0:  An  injective  map  P A  is  given,  A  a  graded
R-algebra generated by P, and each element of P
homogeneous of positive degree. We call a product of
elements of P a monomial in P. Formally, a monomial M is The compact open form a distributive lattice. By
a map P N  and we denote  so that it also0

stands for an element of A. A monomial in P of the form 

with  is called standard.

ASL-1: The set of standard monomials in P is an R-free
basis of A.

ASL-2: For x, y P such that x y and y x, there is an
expression of the form

where  the  sum  is  taken  over  all  standard  monomials
M = x …,  with x <x, y and deg M = deg (xy).1, 1

The most simple example of an  ASL on  P over R is
the Stanley-Reisner ring R[P] =  R[x | x P] / (xy | x y, y x).
The Stanley-Reisner rings play central role in theory of
ASL.

Theorem 4.3: [16] If R is Cohen-Macaulay ring and P is a
distributive lattice, then R[P] is Cohen-Macaulay.

Theorem 4.4: Let R be commutative  ring  with an
identity. If L(R) is a principal lattice and   be  the
compact open of the Zariski spectrum of R. Then R[ ] is
Cohen-Macaulay.

Proof: The set of all prime ideals of a ring R has a natural
topology with basic open

D(a) = p{p|a  p}

We clearly have

D(a) D(b) = D(ab), D(0) = 

of the form

Theorem 4.2, R[ ] is Cohen-Macaulay.
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